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ABSTRACT

The problem of searching for objects of interest occurs in important applications

ranging from rescue, security, transportation, to medicine. With the increasing use

of autonomous vehicles as search platforms, there is a need for fast algorithms that

can generate search plans for multiple agents in response to new information. In this

dissertation, we develop new techniques for automated generation of search plans for

different classes of search problems.

First, we study the problem of searching for a stationary object in a discrete

search space with multiple agents where each agent can access only a subset of the

search space. In these problems, agents can fail to detect an object when inspecting

a location. We show that when the probabilities of detection only depend on the

locations, this problem can be reformulated as a minimum cost network optimization

problem, and develop a fast specialized algorithm for the solution. We prove that our

algorithm finds the optimal solution in finite time, and has worst-case computation

performance that is faster than general minimum cost flow algorithms. We then

generalize it to the case where the probabilities of detection depend on the agents
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and the locations, and propose a greedy algorithm that is 1
2
-approximate.

Second, we study the problem of searching for a moving object in a discrete search

space with multiple agents where each agent can access only a subset of a discrete

search space at any time and agents can fail to detect objects when searching a lo-

cation at a given time. We provide necessary conditions for an optimal search plan,

extending prior results in search theory. For the case where the probabilities of detec-

tion depend on the locations and the time periods, we develop a forward-backward

iterative algorithm based on coordinate descent techniques to obtain solutions. To

avoid local optimum, we derive a convex relaxation of the dynamic search problem

and show this can be solved optimally using coordinate descent techniques. The so-

lutions of the relaxed problem are used to provide random starting conditions for the

iterative algorithm. We also address the problem where the probabilities of detection

depend on the agents as well as the locations and the time periods, and show that a

greedy-style algorithm is 1
2
-approximate.

Third, we study problems when multiple objects of interest being searched are

physically scattered among locations on a graph and the agents are subject to motion

constraints captured by the graph edges as well as budget constraints. We model

such problem as an orienteering problem, when searching with a single agent, or a

team orienteering problem, when searching with multiple agents. We develop novel

real-time efficient algorithms for both problems.

Fourth, we investigate classes of continuous-region multi-agent adaptive search

problems as stochastic control problems with imperfect information. We allow the

agent measurement errors to be either correlated or independent across agents. The

structure of these problems, with objectives related to information entropy, allows for

a complete characterization of the optimal strategies and the optimal cost. We derive

a lower bound on the performance of the minimum mean-square error estimator,

vi



and provide upper bounds on the estimation error for special cases. For agents with

independent errors, we show that the optimal sensing strategies can be obtained in

terms of the solution of decoupled scalar convex optimization problems, followed by

a joint region selection procedure. We further consider search of multiple objects and

provide an explicit construction for adaptively determining the sensing actions.
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Chapter 1

Introduction

1.1 Problem Description

The proliferation of intelligent agents such as robots and UAVs in diverse applications

from rescue, security, transportation, to medicine has created a need for automated

processing and exploitation of information. An important class of problems in these

intelligent systems is the detection and locating of objects of interest using intelligent

search agents, known as search problems in the operations research, control, and

computer science communities.

Search theory has a long history, dating back to its early application for objects

at sea in the 1940s [Koopman, 1946]. Some renowned successful applications of

search theory include the search of the lost submarine Scorpion in 1968 [Richardson

and Stone, 1971], a treasure ship named Central America which sank in 1857 with

treasure worth hundreds of millions of dollars [Stone, 1992], and the disappeared Air

France Flight 447 over the South Atlantic in 2009 [Stone et al., 2014]. Most recently,

search theory has been applied to searching for Malaysian Air Flight 370 which went

lost in the Indian Ocean in 2014 [Davey et al., 2016].

Other applications of search problems include locating leaked gas, discovering

archaeological sites, exploring oil or mineral fields, diagnosing faulty components in a

failed system, finding specific cells or tissues in scanning electron microscope (SEM)

images, etc.

There are different classes of search problems. In terms of the objects of interests



2

being searched, there may be a single object or multiple objects. The objects may be

stationary or moving.

In terms of the search agents, there are single-agent or multi-agent search prob-

lems. A variety of constraints on the agents can be considered. A search agent

usually has a limited amount of resources or search effort that it can spend, so there

is a budget constraint. Also, it may have limited area of influence or sensing range, so

visibility constraints which only allow the agent to search a subset of the search space

can be considered. We refer to search problems with visibility constraints as sparse

search problems. There may also be motion constraints which restrict the agent to

searching only some locations right after searching one location. In addition, when

the agent moves from one location to another, a switching cost that is not negligible

comparing to the search cost may be incurred.

In terms of the agent measurement error model, there are typically two categories.

In the first category, there are only missed detection type of errors but no false alarm

type of errors, i.e., there is a probability for the agent to output a detection signal

if the agent happens to search a location containing an object of interest, but there

will be no detection signal if the agent searches a location with no object of interest.

We refer to measurement error models in this category as simple error models. In the

second category, both missed detection and false alarm types of errors are assumed.

We refer to measurement error models in this category as complex error models.

In terms of the objectives, a typical one is to maximize the probability of detection

subject to the constraints on the agent such as budget, known as detection search.

Another objective is to minimize the total search effort needed to detect the object.

Other objectives include maximizing the total collected rewards where the information

of a location containing an object of interest is measured by a reward at the location.
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1.1.1 Search of a Stationary Object with Simple Error Models

A large body of the literature in classical search theory [Koopman, 1946, Koopman,

1953, Koopman, 1956a, Koopman, 1956b, Koopman, 1956c, Gluss, 1959, Staroverov,

1962,Everett, 1963,Zahl, 1963,Arkin, 1964a,Arkin, 1964b,Matula, 1964,Black, 1965,

Chew, 1967, Kadane, 1968, Tognetti, 1968, Kadane, 1971, Wagner and Stone, 1974,

Kadane and Simon, 1977, Wegener, 1980, Wegener, 1981, Wegener, 1982] deals with

search of a stationary object using a single agent. An important common feature

of these problems is that they assumed the agent has simple error models with only

missed detections but no false alarms, i.e., there is a probability that the agent may

not detect the object when querying the location that contains the object, but the

agent never mistakes a false object for the real one when searching locations that do

not contain the object. Under this assumption, once a detection signal is received,

the search operation will terminate. Therefore, when designing a search strategy, one

should always expect non-detections. No real feedback is needed and the resulting

optimal search strategies are open-loop. That is, the optimal search strategies are

a sequence of predetermined search actions, not a sequence of search policies that

map observation outcomes into search actions. Many of the optimality results were

obtained through the Lagrange multiplier method.

Multi-agent search of a stationary object with simple error models was studied by

Song and Teneketzis [Song and Teneketzis, 2004]. In their problem, the agents are

not subject to visibility or motion constraints, and each agent can freely select any

location to search at any time. The agents are homogeneous, thus the probabilities

of detection only depend on the locations but not on the agents. They developed an

algorithm for constructing an optimal multi-agent search allocation which sorts all

the possible marginal probabilities of detection. But the algorithm does not exploit

the implicit ordering of the marginal probabilities of detection at each location and
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therefore is slow for a large number of locations.

1.1.2 Search of a Moving Object with Simple Error Models

The study of search of a moving object in classical search theory started much later

after its stationary counterpart [Pollock, 1970, Dobbie, 1974, Brown, 1980, Stewart,

1980, Washburn, 1983, Eagle, 1984, Eagle and Yee, 1990]. In moving object search,

the probabilistic characterization of the object trajectories is known to the search

agents. For example, one may assume that the probabilities of all possible object

trajectories are known, or assume that the object moves according to a Markov chain

whose transition probability matrices at each time period are known.

As in its stationary counterpart, the agent in moving object search is assumed to

have simple error models; thus, the optimal search strategies are open-loop.

Most works in classic search theory deal with a single agent. Pollock [Pollock, 1970]

and Dobbie [Dobbie, 1974] solved problems where there are just two possible locations.

Brown [Brown, 1980] established necessary and sufficient conditions of optimal search

plans in discrete time and space, with continuous search effort that can be arbitrarily

divided among locations. He also developed an iterative algorithm for constructing

search plans. Brown’s algorithm was further generalized by Washburn [Washburn,

1983].

Multi-agent search of a moving object with simple error models was studied by

Royset and Sato [Royset and Sato, 2010]. The agents in their problem are subject to

motion constraints. They developed a cutting plane algorithm which is based on the

integer nonlinear programming formulation. However, it does not exploit the special

structure of the problem and is slow to converge.
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1.1.3 Search of Multiple Objects with Motion and Switching Cost Con-

straints

Consider the problem of searching among a set of geographically distributed locations

where every location may contain an object of interest. The information of a loca-

tion containing an object of interest is evaluated by a reward value associated with

the location. Once a search agent searches a location, it will receive deterministic

measurements about the location and thus collect the information reward. However,

the agents cannot move freely from one location to another; their motions are con-

strained. Also, moving from one location to another incurs a switching cost that is

not negligible. We are interested in collecting as many rewards as possible without

producing too much cost.

This class of problems is known as orienteering problems, which are NP-hard,

in the operations research and computer science literature [Tsiligirides, 1984,Golden

et al., 1987, Chao et al., 1996b]. Exact solutions such as column generation and

approximate algorithms with performance guarantees are slow. A variety of heuristics

such as in [Tsiligirides, 1984, Golden et al., 1987, Chao et al., 1996a, Silberholz and

Golden, 2010, Chao et al., 1996b] and metaheuristics such as tabu search have been

proposed.

1.1.4 Adaptive Search with Complex Error Models

The search problems discussed in Sections 1.1.1 and 1.1.2 assume simple error mod-

els that include only missed detections but no false alarms. The resulting search

strategies are open-loop, which continue until an object is detected.

However, sometimes the agents may mistake a false object for the one we are

searching for. For example, when searching for a lost submarine under ocean, a large

rock of the similar size and dimensions as the submarine may produce a signal that

is similar to a real submarine [Stone, 1975]. Thus, for imperfect agents under noisy
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environment, a detection signal may also be false. We refer to such measurement

error models where both missed detection and false alarm types of errors exist as

complex error models.

For search problems with complex error models, open-loop strategies are not opti-

mal. In most cases, the optimal strategies are to determine the search action based on

past actions and measurements. In other words, the optimal strategies are closed-loop

or adaptive. Thus, we refer to search problems with complex error models as adaptive

search problems.

Adaptive search problems with complex error models in discrete search space were

studied by Castañón [Castañón, 1995]. He showed that the optimal search strategies

are to search either of the two most likely locations given the past information at

each step if the agent errors satisfy a simple symmetry condition. He also provided

counterexamples of when the symmetry condition is not satisfied, optimal search

strategies cannot be easily characterized.

In [Jedynak et al., 2011], Jedynak et al. considered adaptive search in a contin-

uous search space using a single agent that selects a region to query, resulting in a

noisy measurement concerning the presence of the object in the query region. The

measurement is then used to update the posterior distribution of the object location.

The objective is to minimize the posterior differential entropy of the object location

after a fixed finite number of measurements. They showed that greedy policies which

maximize the one-stage expected entropy reduction are optimal.

The work in [Jedynak et al., 2011] has been generalized in several directions.

Sznitman et al. [Sznitman et al., 2013] considered the case where the agent can choose

different precision modes with different costs. Rajan et al. [Rajan et al., 2015] consid-

ered search of multiple objects where the agent measurements depend on the number

of objects in the query region. Tsiligkaridis et al. [Tsiligkaridis et al., 2014] studied
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multi-agent adaptive search of a single object where the agent measurement errors

are independent but not correlated among agents. They developed characterizations

of optimal strategies. For the special case where the agents have binary symmetric

error models, they established the equivalence of simultaneous query strategies and

sequential query strategies by the team of agents.

1.2 Contributions

Most works in classic search theory [Stone, 1975,Ahlswede and Wegener, 1987,Benkoski

et al., 1991] address search problems with a single agent. The main scope of this disser-

tation is to develop search theory for planning, scheduling and coordinating multiple

search agents. Most of the problems studied in this dissertation are in the context of

multiple agents.

In this dissertation, we propose new multi-agent search models and develop algo-

rithms to address search problems under these models. Details of the contributions

made in this dissertation are:

• We solved the problem of multi-agent sparse search of a stationary object with

simple error models. We showed that when the agents are homogeneous, the

problem can be reformulated as a minimum cost network flow problem, and

developed a fast specialized primal-dual algorithm for the solution. We proved

that our algorithm finds the optimal solution in finite time and has worst case

computation performance that is much faster than general minimum cost net-

work flow algorithms. We also addressed the problem for the case of heteroge-

neous agents where detection performance depends on both location and agent,

which is known to be NP-hard [Lloyd and Witsenhausen, 1986]. We reduced the

problem to a submodular maximization problem over a matroid, and developed

an approximate algorithm with guaranteed performance. We also developed a
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block coordinate ascent algorithm, and provided an upper bound on the optimal

objective value (total probability of detection).

• We studied the problem of multi-agent sparse search of a Markovian moving

object with simple error models. We developed necessary conditions for an

optimal search plan. Using these necessary conditions, we developed a forward-

backward algorithm based on coordinate descent techniques to obtain solutions.

For the case where the agents are homogeneous, each iteration of the coordinate

descent can be reduced to the solution of a min-cost flow problem. To avoid lo-

cal minima, we derived a convex relaxation of the dynamic search problem and

showed this can be solved optimally using coordinate descent techniques. The

solutions of the relaxed problem are used to provide random initial allocations

for the iterative algorithm. We also addressed the problem where the probabili-

ties of detection depend on agents, time periods and locations. We reduced the

problem to a submodular maximization problem over a matroid, and developed

two greedy algorithms with performance guarantees. We also provided a lower

bound on the optimal objective value (total probability of non-detection).

• We studied the multi-agent multi-object search problem where the potential

objects of interest being searched are physically scattered among locations ab-

stracted as nodes on an undirected graph and the agents are subject to motion

and switching cost constraints captured by the graph edges as well as budget

constraints. We modeled such problem as a single orienteering problem (SOP),

when searching with a single agent, or a team orienteering problem (TOP), when

searching with multiple agents. We developed a new class of fast algorithms,

based on a decomposition of the orienteering problem into a knapsack assign-

ment problem and a subsequent traveling salesperson problem. We combined

greedy algorithms for knapsack problems with the use of spanning trees to esti-
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mate traveling salesperson tour lengths to obtain new approximate algorithms

for orienteering problems.

• We solved the problem of multi-agent adaptive search with complex error mod-

els, formed as a stochastic control problem with imperfect information. The

structure of the problem, with objectives related to information entropy, allows

for a complete characterization of the optimal strategies and the optimal cost-

to-go for the resulting finite-horizon stochastic control problem. We focused

on the case where multiple agents can each select its own search region and

obtain noisy measurements regarding the presence of the object in the region.

We allowed the agent measurement errors to be correlated across agents. We

obtained a complete characterization of optimal policies for this dynamic search

problem, and provided a constructive algorithm for computing optimal policies

in real time based on convex optimization. When the measurement errors of

the agents are independent, we showed that the computation of optimal policies

can be decoupled into individual scalar convex optimization problems, followed

by a joint region selection procedure. We provided simple symmetry conditions

where the solutions can be determined analytically. We also considered the

problem where individual agents can select the accuracy of their sensing modes

with different costs, and derived optimal strategies for this problem. In addi-

tion, we developed new results for the case where multiple objects of interest

are present.

1.3 Organization of the Dissertation

In Chapter 2, we provide the related background of the search problems studied in

this dissertation. In Chapter 3, we present results for problems of multi-agent sparse

search of a stationary object with simple error models. In Chapter 4, we present
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results for problems of multi-agent sparse search of a Markovian moving object with

simple error models. In Chapter 5, we present results for problems of multi-agent

multi-object search with motion and switching cost constraints. In Chapter 6, we

present results for problems of multi-agent adaptive search with complex error models.

We conclude the dissertation in Chapter 7 and provide directions for future work.
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Chapter 2

Background

In this chapter, we provide related background of the search problems studied in this

dissertation. Section 2.1 reviews previous results on search of a stationary object with

simple error models. Section 2.2 reviews previous results on search of a moving object

with simple error models. Section 2.3 reviews previous results on search of multiple

objects with motion and switching cost constraints. Section 2.4 reviews previous

results on adaptive search with complex error models.

2.1 Search of a Stationary Object with Simple Error Models

In classical search theory [Stone, 1975], the search effort was assumed to be either

continuous (e.g., one can allocate “half a search” to a location) or only allowed to be

discrete (usually number of searches at each location). It was assumed to be applied

continuously or over discrete stages. For the purpose of this dissertation, we focus on

reviewing results for discrete search effort applied over discrete stages in this section.

A typical problem of single-agent search of a stationary object with simple error

models in classical search theory [Stone, 1975] is defined as follows:

• X = {1, . . . , K}: a discrete search space of K possible locations.

• pk0, k ∈ X : prior probability of location k containing the object.

• pkj, j ≥ 1, k ∈ X : probability of detecting the object at location k on the j-th

search after failing the previous j−1 searches. Assume that pkj is decreasing in
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j for each k. A special case is where searches of the same location k are inde-

pendent with probability of detection αk; in this case, pkj = pk0(1− αk)j−1αk.

• ckj = c0, j ≥ 1, k ∈ X : cost on search effort of the j-th search of location k. It

is a positive constant number.

• B: budget on total search effort. It is a positive integer.

• a = (a1, . . . , aK): search plan where ak is the number of searches performed at

location k.

• C(a): cost on search effort using plan a.

• F (a): total probability of detection using plan a.

Note that pkj is the probability of detecting the object at location k if the object is

at the location. There will be no detection signal if the object is not at the location.

In such simple error models, there are only missed detections but no false alarms.

The search operation will terminate once a detection signal is received. Therefore,

feedback is not needed for such problems and the resulting search plans are open-loop.

In this formulation, the objective is to select search plan a to maximize the prob-

ability of detection F (a) without exceeding the search effort budget:

maximize
a

F (a) =
K∑
k=1

pk0

ak∑
j=1

pkj

subject to C(a) =
K∑
k=1

ak∑
j=1

ckj ≤ B

ak ∈ {0, 1, . . . , B}

The following result is a necessary and sufficient condition for an optimal search

plan. It is based on duality, and exploits the concavity of a piecewise linear interpo-

lation of F (a) along with the constraints on C(a).
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Theorem 2.1.1 (Theorem 4.2.3 of [Stone, 1975]). Assume that ckj = c0, j ≥ 1, k ∈ X ,

i.e., the cost of the j-th search of location k is a constant c0. Assume that pkj is

decreasing in j for each k and search plan a∗ has cost C(a∗) such that 0 < C(a) <∞.

Then a necessary and sufficient condition for a∗ to be optimal for cost C(a∗) is that

there exists λ ≥ 0 such that for each k ∈ X

pk0
pkj
c0

≥ λ for 1 ≤ k ≤ a∗k

≤ λ for a∗k < k <∞

The quantity pk0
pkj
c0

is the ratio of marginal increase in probability of detection

to the marginal increase of cost, or the marginal rate of return. The variable λ is a

Lagrange multiplier.

To the best of our knowledge, problems of multi-agent search with simple error

models were first considered by Song and Teneketzis [Song and Teneketzis, 2004].

The problem is formulated as follows:

• M : number of agents.

• X = {1, . . . , K}: a discrete search space of K possible locations.

• pk0, k ∈ X : prior probability of location k containing the object.

• αk: probability of detecting the object at location k if the object is there.

• N : searches are performed over N units of time. Each agent can search one

location at each time. Each location can be searched by at most one agent at a

given time.

• a = (a1, . . . , aK): search plan where ak is the number of searches performed at

location k.

• F (a): total probability of detection using plan a.
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If the object is at location k, the number of searches needed until detecting the

object satisfies the geometric distribution. Thus, the probability of detecting the

object at location k on the j-th search after failing the previous j − 1 searches is

(Lemma 2.1 of [Song and Teneketzis, 2004]):

pkj = pk0(1− αk)j−1αk

The objective is to select search plan a to maximize the probability of detection

F (a) after N rounds of searches:

maximize
x

F (a) =
K∑
k=1

pk0

ak∑
j=1

pkj

subject to
K∑
k=1

ak ≤MN

ak ∈ {0, . . . , N}, ∀k

From the formulation, it is natural to assume that M < K, i.e., the number

of agents is less than the number of locations. The following result states that the

optimal search plan can be obtained from the MN largest numbers out of all KN

numbers pkj.

Theorem 2.1.2 (Theorem 2.1 of [Song and Teneketzis, 2004]). Let L denote the set

of MN largest numbers pkj, k ∈ X , j = 1, . . . , N . Then there exists a search plan

a∗ = (a∗1, . . . , a
∗
K) such that

a∗k =
N∑
j=1

1L(pkj) (2.1)

where

1L(pkj) =

1, if pkj ∈ L
0, otherwise
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that is optimal.

To obtain the MN largest marginal probabilities pkj, one needs to sort the KN

numbers.

2.2 Search of a Moving Object with Simple Error Models

Since many results in classical search theory [Washburn et al., 2016] were obtained

assuming continuous search effort, we will review results of continuous search effort.

We will also review results of discrete search effort.

A typical problem of single-agent search of a moving object with simple error

models in classical search theory [Washburn et al., 2016] is defined as follows:

• X = {1, . . . , K}: a discrete search space of K possible locations.

• T : finite time horizon.

• x = (x1, . . . , xT ) ∈ X T : object trajectory. At time period t, the object is at

location xt.

• Ω: space of all possible object trajectories.

• p(x): probability that the object is taking trajectory x. It is independent of

the search actions.
∑
x∈Ω p(x) = 1.

• at = (at,1, . . . , at,K): search plan for time period t where at,k is the amount of

search effort allocated for location k at time period t.

• Bt: budget on search effort for time period t, i.e.,
∑

k∈X at,k ≤ Bt.

• a = (a1, . . . ,aT ): search plan for all T time periods.
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• f(αt,xtat,xt): detection function, i.e., the probability of detection at time period

t with search plan a given the object trajectory x. αt,k’s are known detection

rates.

• F (a) =
∑
x∈Ω p(x)[1 − f(

∑T
s=1 αs,xsas,xs)]: total probability of non-detection

after T time periods with search plan a.

The objective is to find a to minimize the total probability of non-detection F (a):

minimize
a

F (a) =
∑
x∈Ω

p(x)[1− f(
T∑
s=1

αs,xsas,xs)] (2.2)

subject to
K∑
k=1

at,k ≤ Bt, ∀t (2.3)

0 ≤ at,k ≤ Bt, ∀t, k (2.4)

When the detection function f(ζ) is an exponential function f(ζ) = 1 − e−ζ ,

Brown [Brown, 1980] established necessary and sufficient conditions of optimal search

plans. Now F (a) becomes

F (a) =
∑
x∈Ω

p(x)e−
∑T
s=1 αs,xsas,xs

Define q(a, t, k) as

q(a, t, k) =
∑
x:xt=k

p(x)e−
∑
s 6=t αs,xsas,xs

Note that q(a, t, ·) is proportional to the conditional probability distribution that

the object is detected only at time period t but not at other times. And we have

F (a) =
K∑
k=1

q(a, t, k)e−αt,kat,k (2.5)

Without considering the time index t, the right hand side of (2.5) can be inter-
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preted as a stationary search problem. e−αt,kat,k is the probability of detecting the

object if a search effort of at,k is allocated for location k, and q(a, t, k) is a defective

“prior” probability that the object is at location k. The optimal solutions of the

moving object search problem are closely related to the optimal solutions of these

stationary search problems, as shown in the following result.

Theorem 2.2.1 (Proposition 4 of [Brown, 1980]; also Theorem 3.3 of [Washburn

et al., 2016]). A search plan a∗ is optimal for problem (2.2)–(2.4) if and only if for

all t = 1, . . . , T , a∗t is optimal for the problem below:

minimize
at

K∑
k=1

q(a, t, k)e−αt,kat,k (2.6)

subject to
K∑
k=1

at,k ≤ Bt (2.7)

0 ≤ at,k ≤ Bt, ∀k (2.8)

When the search efforts are discrete, i.e., at,k ∈ {0, . . . , Bt} is the number of

searches performed at location k at time period t, the conditions in Theorem 2.2.1

are necessary but not sufficient [Washburn, 1980].

Based on Theorem 2.2.1, Brown developed an algorithm for the case of continuous

search effort and exponential detection function [Brown, 1980]. The algorithm is

described briefly as follows:

• Initialization: Let a = 0. Let ε > 0 be a tolerance value. Let Fold = 1.

• Step 1: For t = 1, . . . , T , find the optimal solution a′t of the problem (2.6)–

(2.8), and replace at in a with a′t.

• Step 2: Compute Fnew = F (T,a). If |Fnew−Fold| < ε, terminate the algorithm.

Else, let Fold = Fnew and return to Step 1 starting from t = 1.

Furthermore, when the object motion follows a Markov chain, Brown gave an



18

efficient implementation of his recursive algorithm [Brown, 1980]. Let P denote the

transition probability matrix of the Markov chain whose (i, j)-th entry ρij denotes

the probability of the object moving from location i to location j in consecutive time

periods. Let π1,k denote the prior probability of the object being at location k. Define

R(a, t, k) =
∑

x∈Ω:xt=k

π1,x1ρx1,x2 · · · ρxt−1,ke
−

∑t−1
s=1 αs,xsas,xs

and

S(a, t, k) =
∑

x∈Ω:xt=k

ρk,xt+1 · · · ρxT−1,xT e
−

∑T
s=t+1 αs,xsas,xs

Then,

q(a, t, k) = R(a, t, k) · S(a, t, k), ∀a, t, k (2.9)

The efficient implementation of Brown’s algorithm is:

• Initialization: Let a = 0. Let ε > 0 be a tolerance value. Let Fold = 1. Let

S(a, t, k) = 1, ∀t, k. Let R(a, 1, k) = π1,k, ∀k.

• Step 1: For t = 1, . . . , T , compute q(a, t, k) using (2.9) for all k and find the

optimal solution a′t of the problem (2.6)–(2.8). Replace at in a with a′t. If

t < T , compute

R(a, t+ 1, k) =
K∑
j=1

R(a, t, j)ρjke
−αt,jat,j

• Step 2: Compute Fnew = F (T,a). If |Fnew−Fold| < ε, terminate the algorithm.

Else, let Fold = Fnew. Reset R(a, 1, k) to π1,k for all k. Let S(a, T, k) = 1 and
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starting from t = T − 1 to t = 1, compute

S(a, t− 1, k) =
K∑
j=1

ρkje
−αt,jat,jS(a, t, j)

Return to Step 1.

Washburn [Washburn, 1983] developed a Forward And Backward (FAB) algorithm

which generalizes Brown’s algorithm to more general objective functions than the

probability of detection over a fixed time horizon, e.g., the expected time to detect.

He had also used a version of the FAB algorithm to solve a problem where the object

moves as a diffusion process approximated with 67 cells [Washburn, 1975].

Royset and Sato [Royset and Sato, 2010] studied problems of multi-agent search of

a moving object with simple error models and developed cutting plane methods. They

assumed that the agents have discrete search effort and motion constraints. They

considered two cases: homogeneous agents and single object; heterogeneous agents

and multiple objects. We will focus on reviewing the case of homogeneous agents and

single object as the cutting plane methods developed for the case of heterogeneous

agents and multiple objects are similar.

The problem for the case of homogeneous agents and single object is formulated

as follows:

• X = {1, . . . , K}: a discrete search space of K possible locations.

• T : finite time horizon.

• x = (x1, . . . , xT ) ∈ X T : object trajectory. At time period t, the object is at

location xt.

• Ω: space of all possible object trajectories.
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• p(x): probability that the object is taking trajectory x. It is independent of

the search actions.
∑
x∈Ω p(x) = 1.

• M : number of agents. Each agent searches once at each time period.

• b1,k: number of agents that are at location k at the initial time period 1.

• bt,k,k′ : the number of agents that search location k at time period t and will

move to location k′ next.

• F(k): the set of locations to which the agent can move from its current location

k.

• R(k): the set of locations from which the agent can move to its current location

k.

• ∆tk,k′ : number of time periods for an agent to move directly from location k to

location k′ and search location k′.

• a = {at,k, t = 1, . . . , T, k ∈ X}: search plan where at,k is the number of agents

searching location k at time period t.

• f(αt,xtat,xt) = 1 − e−αt,xtat,xt : exponential detection function. The detection

rates αt,k’s were constant in [Royset and Sato, 2010], but the cutting plane

methods also work for non-constant αt,k’s.

• F (a) =
∑
x∈Ω p(x)e−

∑T
t=1 αt,xtat,xt : total probability of non-detection after T

time periods with search plan a.

The objective is to find a to minimize the total probability of non-detection F (a):

minimize
a

F (a) =
∑
x∈Ω

p(a)e−
∑T
t=1 αt,kat,k (2.10)
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subject to
∑

k′∈R(k)

bt−∆tk′,k,k′,k =
∑

k′∈F(k)

bt,k,k′ , ∀t, k (2.11)

∑
k′∈F(k)

b1,k,k′ = b1,k, ∀k (2.12)

∑
k′∈R(k)

bt−∆tk′,k,k′,k = at,k ∀t, k (2.13)

K∑
k=1

at,k ≤M, ∀t (2.14)

bt,k,k′ ≥ 0, ∀t, k, k′ (2.15)

at,k ∈ {0, . . . ,M} (2.16)

The cutting plane algorithm by Royset and Sato [Royset and Sato, 2010] is de-

scribed briefly as follows:

• Initialization: Choose the final relative optimality tolerance δ > 0 and the

relative optimality tolerances δ(i) > 0, i = 1, 2, . . ., at each iteration. Set lower

bound ξ of the optimal value of the problem defined by (2.10)–(2.16) to be 0.

Set upper bound ξ̄ of the optimal value of the problem defined by (2.10)–(2.16)

to be 1. Set a(0) = 0 and i = 1.

• Step 1: Solve the following mixed integer linear programming problem

minimize
(ξ,a)

ξ

subject to F (a(j)) +∇F (a(j))′(a− a(j)) ≤ ξ, ∀j = 0, . . . , i− 1 (2.17)

(2.11)− (2.16)

to near optimality. This gives us a feasible solution denoted by (ξ(i),a(i)) and a

lower bound ξ(i) such that ξ(i) − ξ(i) ≤ δ(i)ξ(i) for the chosen relative optimality

tolerance value δ(i) at the i-th iteration.
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• Step 2: If ξ(i) > ξ, let ξ = ξ(i). If F (a(i)) < ξ̄, let ξ̄ = F (a(i)). Then, if

ξ̄ − ξ < δξ, terminate the algorithm. Else, return to Step 1.

The cutting plane algorithm operates directly on an integer nonlinear program

and can thus be easily generalized to apply to the case where there are no motion

constraints, or the case of heterogeneous agents and multiple objects, etc. But it

tends to converge slowly due to its lack of exploitation of the special structures in

specific problems and the fact that an integer programming problem is solved at each

iteration.

2.3 Search of Multiple Objects with Motion and Switching

Cost Constraints

A typical orienteering problem is defined as follows:

• G = (V,E): an undirected graph where the node set V = {v1, . . . , vN} repre-

sents the locations and the edge set E = {(vi, vj), 1 ≤ i < j ≤ N} represents

all the feasible direct movements between locations. Assume that symmetric

relation holds, i.e., (vi, vj) ∈ E if and only if (vj, vi) ∈ E.

• rk: reward at node vk which measures the information of location k containing

an object of interest. The reward will be collected once the location is searched.

• cij: edge cost of (vi, vj) which is the switching cost between the two locations.

Assume that cij = cji.

• M : number of agents.

• B: budget on the maximum cost that each agent can incur.
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When M = 1, i.e., a single agent is used, we call it a single orienteering problem

(SOP) [Tsiligirides, 1984,Golden et al., 1987]. When M > 1, i.e., multiple agents are

used, the problem becomes a team orienteering problem (TOP) [Chao et al., 1996b].

The objective is to find closed paths, or tours, that start and end at v1 to maximize

the total rewards collected without exceeding the cost budgets. Since the reward will

be collected once a location is searched, the tours of different agents do not overlap.

Let binary variables βkm ∈ {0, 1} denote if node vk is visited by the m-th agent, and

let binary variables eijm ∈ {0, 1} denote if edge (vi, vj) is traveled by the m-th agent.

An integer programming formulation of the orienteering problem is as follows:

maximize
{βkm}

M∑
m=1

N∑
k=2

rkβkm

subject to
M∑
m=1

βkm ≤ 1, k = 2, . . . , N (2.18)

N∑
j=2

e1jm = 2;
N−1∑
i=1

N∑
j=i+1

cijeijm ≤ B, ∀m

k−1∑
i=1

eikm +
N∑

j=k+1

ekjm = 2βkm, k = 2, . . . , N, ∀m

2
∑
vk∈S

βkm ≤ |S|
( ∑
vi∈S,vj 6∈S

eijm +
∑

vi 6∈S,vj∈S

eijm

)
(2.19)

S ⊂ V \ {v1}, |S| ≥ 2, ∀m

e1jm ∈ {0, 1, 2}, j = 2, . . . , N, ∀m

eijm ∈ {0, 1}, 2 ≤ i < j ≤ N, ∀m

βkm ∈ {0, 1}, k = 2, . . . , N, ∀m

where βkm decides whether agent m visits location k. Constraints (2.18) ensure that

each node will be visited by at most one agent. There is also an exponential number

of subtour elimination constraints (2.19).
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However, exact solutions such as column generation, branch-and-bound, branch-

and-cut and branch-and-price which are based on integer programming formulations

are slow due to the inherent NP-hard complexity. Similarly, approximate algorithms

with performance guarantees such as in [Blum et al., 2007] have theoretical impor-

tance but result in slow algorithms.

Heuristics exist for both SOP and TOP. For SOP, Tsiligirides [Tsiligirides, 1984]

proposed a Monte Carlo based algorithm. The algorithm randomly generates many

tours and picks the one with the highest total rewards. To generate one candidate

tour, the algorithm uses a metric called desirability, des(vk), to pick the next node vk

to add to the tour:

des(vk) =
( rk
c(vk, vlast)

)4

where c(vk, vlast) is the edge cost from vk to the node vlast that is most recently added

to the tour. Then the algorithm randomly picks one of the four nodes with the highest

des(vk) to add to the tour.

Golden et al. [Golden et al., 1987] proposed a center-of-gravity heuristic for SOPs

defined in Euclidean space. It consists of three steps: tour construction, tour im-

provement, and center-of-gravity. The first two steps build an initial tour. In the

third step, the algorithm computes the virtual center of gravity vcog of the initial

tour, as well as a metric, cogr(vk), for each node vk:

cogr(vk) =
rk

c(vk, vcog)

where c(vk, vcog) is the Euclidean distance from vk to the center of gravity vcog. The

nodes are ranked by their cogr(vk) and inserted to the tour with cheapest insertion

without exceeding the budget. The three steps are repeated until two identical tours

have been generated. Finally, the tour with the highest total rewards is selected from
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all generated tours.

Chao et al. [Chao et al., 1996a] proposed a heuristic which restricts to considering

only nodes within an ellipse whose two foci are the start and end nodes and the length

of the major axis is equal to the budget B (will be a circle if the start and end nodes

are identical). It creates and maintains many tours. At the following improvement

steps, the algorithm exchanges nodes between or within tours to improve the total

rewards of the current best tour.

Silberholz and Golden [Silberholz and Golden, 2010] proposed a two-parameter

iterative heuristic for a generalized version of SOP. It can also be applied to standard

SOP. The heuristic repeatedly runs a subroutine which initializes a tour and iteratively

modifies the tour by removing nodes already in the tour and adding new nodes to

the tour. One of the two user-defined parameters controls the number of iterations

of modification in each run of the subroutine, and the other parameter controls the

number of nodes to be removed at each iteration of modification.

For TOP, Chao et al. [Chao et al., 1996b] proposed a heuristic which is similar to

their SOP heuristic in [Chao et al., 1996a]. Instead of selecting only one best tour,

the TOP heuristic selects M best tours, where M is the number of search agents.

Other approaches based on meta-heuristics (tabu search, ant colony optimization,

variable neighborhood search, etc.) have been proposed for both SOP and TOP.

Interesting readers can refer to the survey paper [Vansteenwegen et al., 2011] for

more information.

2.4 Adaptive Search with Complex Error Models

Adaptive search problems with complex error models are in general much harder

than problems with simple error models. Existing solutions for many adaptive search

problems typically require an error-free verification step to verify the authenticity of
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a detection signal and rule out false objects [Stone, 1975,Kress et al., 2012].

In [Castañón, 1995], Castañón studied classes of adaptive search problems with

complex error models in discrete search space and characterized optimal search strate-

gies for these problems. The problem is formulated as follows:

• X = {1, . . . , K}: a discrete space of K possible locations.

• Xk ∈ {0, 1}: random variable which indicates whether location k contains an

object of interest.

• p0(k): prior probability of location k containing an object of interest, i.e.,

p0(k) = Pr(Xk = 1).

• N : number of search stages. At each stage, the agent searches one location.

• an: location to be searched at stage n.

• Yn: measurement at stage n. It satisfies

Pr(Yn = y|an, Xan) =


f1(y), if Xan = 1

f0(y), else

• Dn = {a1, Y1, . . . , an, Yn}: information available at stage n which consists of

past actions and measurements.

• pn(k): posterior probability of location k containing an object of interest after

n stages, i.e., pn(k) = Pr(Xk = 1|Dn).

• γ = {γn}: search strategy where γn : pn−1 → X .

Two assumptions on the objects were made in [Castañón, 1995]: (1) Exclusive

object assumption where one and only one object is in X ; (2) Independent objects
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assumption where the events that a location contains an object of interest are inde-

pendent across locations. The objective is to find a search plan γ to maximize the

final probability of correctly selecting a location which contains an object of interest,

under either assumption:

inf
γ
Eγ [ max

k=1,...,K
pN(k)]

Castañón [Castañón, 1995] showed that under either assumption, if the measure-

ment error model of the agent satisfies a symmetry condition such that there exists

a constant c that

f1(y) = f0(c− y), ∀y (2.20)

then optimal search strategies can be fully characterized by myopic strategies as

follows:

Theorem 2.4.1 (Propositions 3 and 5 of [Castañón, 1995]). Under either the ex-

clusive object assumption or the independent objects assumption, if the measurement

error model of the agent satisfies the symmetry condition in (2.20), then the optimal

search strategy is to search either of the two most likely locations given past informa-

tion Dn−1 at any stage n.

For the special case where the measurements are binary, f1(y) can be characterized

by the probability of detection α and f0(y) can be characterized by the probability

of false alarm β. Castañón showed that under either object assumption, when β = 0,

an optimal search strategy is to search the second most likely location given past

information Dn−1 at any stage n (Propositions 6 and 7 of [Castañón, 1995]). However,

when α, β > 0 but α 6= β, i.e., both missed detections and false alarms exist but the

symmetry condition does not hold, optimal strategies are no longer myopic.

Jedynak et al. [Jedynak et al., 2011] considered a problem of searching for a

stationary object in a continuous search space using a single agent. The agent selects
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a region to query, resulting in a noisy answer concerning the presence of the object

in the query region. We refer to such agents as Boolean agents, as they are observing

a noisy yes-no answer to their query. The objective is related to differential entropy.

This problem is related to results in information theory such as the Rényi-Ulam

game [Cover and Thomas, 2012], Horstein’s [Horstein, 1963] probabilistic bisection

scheme for sequential decoding, and Burnashev and Zigangirov’s [Burnashev and

Zigangirov, 1974] work on probabilistic search.

The problem in [Jedynak et al., 2011] is formulated as follows:

• X ⊂ Rd: a continuous space which is a compact subset of the Euclidean space.

• X: position of the stationary object.

• p0(x): prior probability distribution that is absolutely continuous with respect

to Lebesgue measure.

• N : number of search stages.

• An ⊂ X : search query at stage n.

• Yn: measurement at stage n. It satisfies:

Pr(Yn = y|An, X)


f1(y), if X ∈ An

f0(y), if X 6∈ An

For simplicity, let Yn take values from a discrete set.

• Dn = {A1, Y1, . . . , An, Yn}: information available at stage n which consists of

past actions and measurements.

• pn(x): posterior probability of the object location X after n stages, i.e., pn(x) =

p(x|Dn).
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• γ = {γn}: search strategy where γn : pn−1 → X .

• H(pn) = −
∫
X pn(x) log2(pn(x))dx: posterior differential entropy after n stages.

The objective is to find search strategy γ to minimize H(pN) – the posterior

differential entropy after N stages:

inf
γ
Eγ [H(pN)|p0]

To solve the problem, define the optimal value function V (pn, n) as:

V (pn, n) = inf
An+1

EYn+1 [V (pn+1, n+ 1)|An+1, pn]

and define function ϕ(u) as:

ϕ(u) = H(uf1 + (1− u)f0)− uH(f1)− (1− u)H(f0)

where H(·) is the standard Shannon entropy. Jedynak et al. [Jedynak et al., 2011]

showed the following optimality result:

Theorem 2.4.2 (Theorem 2 and Proposition 1 of [Jedynak et al., 2011]). A search

strategy that selects An such that
∫
An⊂X pn(x)dx = u∗ ∈ arg maxu ϕ(u) is optimal.

Also, the optimal value function at any stage n is given by

V (pn, n) = H(pn)− (N − n)ϕ(u∗)

The work in [Jedynak et al., 2011] has been generalized in several directions.

Sznitman et al. [Sznitman et al., 2013] considered the case where the agent is allowed

to choose a precision mode ln with a cost W (ln) at each stage n. Different precision

modes will trigger different measurement error models. The objective is to find a

sequence of (An, ln), n = 1, . . . , N , to minimize the sum of the final-stage expected

posterior differential entropy H(pN) and the discounted total precision mode costs:
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inf
(An,ln),n=1,...,N

E[H(pN) + λ

N∑
n=1

W (ln)|p0]

They showed that the myopic strategies are optimal and the optimal value func-

tions have closed-form expression.

Rajan et al. [Rajan et al., 2015] generalized [Jedynak et al., 2011] to consider

searching for multiple objects using a single agent. There are J objects whose posi-

tions are denoted by X1, . . . , XJ . At each stage, the agent queries An and receives a

random measurement Yn such that

Pr(Yn|An, X1, . . . , XJ) = Pr(Yn|1{X1∈An} + · · ·+ 1{XJ∈An})

That is, the measurement Yn is a random function of the number of objects being

queried by An. Similar as in [Jedynak et al., 2011], the objective is to minimize the

final-stage expected posterior differential entropy. They derived a lower bound for

the optimal value of the problem, and provided a search strategy with approximation

guarantee.

Tsiligkaridis et al. [Tsiligkaridis et al., 2014] generalized [Jedynak et al., 2011] to

the problem of searching for a single object using multiple Boolean agents with inde-

pendent errors, and developed characterizations of optimal strategies. They focused

on the case where the agents have binary symmetric error models, and established

the equivalence of simultaneous query strategies and sequential query strategies for

the case.
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Chapter 3

Multi-Agent Sparse Search of a Stationary

Object with Simple Error Models

In this chapter, we generalize the problem in [Song and Teneketzis, 2004] to the

case where each agent can only search in part of the search space. We refer to this

problem as the sparse multi-agent discrete search problem. For the special case where

the agents are homogeneous and thus the probability of detection depends only on the

location being searched but not on the agent, we provide a novel perspective of viewing

the problem as a minimum cost network flow problem, inspired by [Castañón, 1987].

We develop a fast specialized algorithm for solving the problem based on the min-cost

flow perspective. We show that the algorithm always terminates in finite time, and

analyze the time complexity of the algorithm. We prove that the algorithm yields

an optimal agent allocation. We perform experiments to show that our specialized

algorithm is faster than general min-cost flow algorithms.

We also consider the general case where the agents are heterogeneous and thus

the probability of detection depends on both the agent performing the search and the

location being searched. This problem has been studied previously and found to be

NP-hard [Lloyd and Witsenhausen, 1986,Ahuja et al., 2007]. In [Ahuja et al., 2007],

several approximate algorithms are considered, including branch-and-bound and local

search. We show that this problem can be posed as a submodular maximization

problem over a matroid, and establish that the greedy algorithm is guaranteed to

perform within a factor of 1
2

of the optimal value. We also develop a block coordinate
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ascent algorithm, and provide an upper bound of the optimal objective value (total

probability of detection).

The chapter is organized as follows: In Section 3.1, we formulate the sparse multi-

agent discrete search problem. In Section 3.2, for the special case of homogeneous

agents, we introduce the min-cost flow perspective of viewing the problem. We provide

the primal and dual linear programming formulations of the problem, and derive

conditions in which an agent allocation is optimal. We propose and analyze a fast

algorithm for solving the problem in Section 3.3, and prove that it yields an optimal

solution. Section 3.4 discusses the general case of heterogeneous agents where the

probability of detection depends on both the location and the agent. Section 3.5

contains the experiment results.

3.1 Problem Formulation

Consider M agents that search for a stationary object hidden in one of K discrete

locations. Each agent has limited search accessibility to only a subset of locations.

Define an accessibility pair of agent m and location k if and only if agent m has

accessibility to location k, denoted by (m, k). Let A denote the set of all accessibility

pairs. Without loss of generality, assume that each location can be accessed by at

least one agent and each agent can access at least one location. Assume that a search

of any location by any agent that can access it costs one unit of search effort. Let the

budget of total effort agent m can allocate be Nm ∈ Z+, the set of positive integers.

Let N =
∑M

m=1Nm be the total search effort available.

Denote the prior probability of location k containing the object as pk0. If the

object is in location k, a search of the location with agent m will find the object

with probability αmk. If the object is not in location k, searching it with any agent

will always yield “no detection”. Assume that agent observations are conditionally
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independent across locations and of previous searches.

Our objective is to allocate agent effort among accessible locations so as to max-

imize the probability of finding the object after spending all budgets. Suppose

that we allocate xmk units of effort to search location k using agent m. Let xk =

(x1k, . . . , xMk). Due to the independence assumption on agent observations, the prob-

ability of finding the object at location k under allocation xk is

Pk(xk) = pk0(1−
M∏
m=1

(1− αmk)xmk), k = 1, . . . , K

The problem is to find an agent allocation x = {xmk,∀m, k} to maximize the

probability of detecting the object:

maximize
x

K∑
k=1

pk0

(
1−

M∏
m=1

(1− αmk)xmk
)

(3.1)

subject to
∑

k:(m,k)∈A

xmk = Nm, ∀m (3.2)

xmk ∈ {0, 1, . . . , Nm}, ∀(m, k) ∈ A (3.3)

xmk = 0, ∀(m, k) 6∈ A (3.4)

Note that the equality constraint for the agent search budgets can be included because

of the monotonicity of the objective function.

3.2 A Min-Cost Flow Interpretation for Homogeneous Agents

3.2.1 Problem Under Homogeneous Agent Assumption

When the agents have homogeneous error models, the probabilty of detecting the

object at location k if the object is at the location is αk, independent of the agent.

Let uk =
∑M

m=1 xmk denote the number of searches for location k, then the probability

of finding the object after uk searches of location k is pk0(1−(1−αk)uk). The problem
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becomes:

maximize
x

K∑
k=1

pk0(1− (1− αk)uk) (3.5)

subject to
∑

m:(m,k)∈A

xmk = uk, ∀k

∑
k:(m,k)∈A

xmk = Nm, ∀m

xmk ∈ {0, 1, . . . , Nm}, ∀(m, k) ∈ A

A useful quantity is pkj, the probability that j − 1 searches of location k have

not found the object while the j-th search of location k finds the object. Using the

conditional independence of search outcomes, this expression becomes

pkj = pk0(1− αk)j−1αk

The problem has a separable nonlinear objective function (3.5) and linear con-

straints. Each of the individual functions in (3.5) is concave when the variables uk

are relaxed to be continuous. By introducing a few additional variables, we can

transform (3.5) into linear form, as each of the individual functions in (3.5) can be

decomposed as

pk0(1− (1− αk)uk) = maximize
{ykj}

N∑
j=1

pkjykj (3.6)

subject to
N∑
j=1

ykj = uk (3.7)

ykj ∈ {0, 1}, ∀j (3.8)
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3.2.2 A Min-Cost Flow Interpretation

We next map the above problem to a minimum cost network flow problem. By

using the transformation in (3.6)–(3.8), we obtain the following integer programming

problem:

minimize
x,y

K∑
k=1

N∑
j=1

−pkjykj

subject to
∑

k:(m,k)∈A

xmk = Nm, m = 1, . . . ,M (3.9)

∑
m:(m,k)∈A

xmk =
N∑
j=1

ykj, k = 1, . . . , K (3.10)

K∑
k=1

N∑
j=1

ykj = N (3.11)

xmk ∈ {0, 1, . . . , Nm}, ∀(m, k) ∈ A

ykj ∈ {0, 1}, ∀k, j

A graphical representation of the constraints of this optimization problem is de-

picted in the directed multigraph in Figure 3·1. Source node sm with supply Nm

represents the m-th search agent. Sink node tk represents the k-th location. If agent

m can access location k, there is a directed arc from source node sm to sink node tk.

Let xmk ∈ {0, 1, . . . , Nm} denotes the flow from sm to tk. There is also a dummy

global sink node. The cost on each arc from source sm to sink tk is zero. From tk

to the global sink node, there are N directed arcs, with cost −pkj on the j-th arc.

Denote the flow on the j-th arc from tk to the global sink node by ykj ∈ {0, 1}.
Equations (3.9), (3.10) and (3.11) correspond to flow conservation at the source

nodes sm’s, the sink nodes tk’s and the global sink node, respectively. This integer

linear programming problem is equivalent to the transformed problem presented in

the previous section.
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Figure 3·1: Sparse multi-agent discrete search problem viewed as a
min-cost network flow problem.

From Fig. 3·1, it is clear that the constraints in this integer program are uni-

modular, and the right-hand sides of the constraints are integers (the search efforts.)

Hence, the optimal solutions of the linear programming relaxation are integer-valued.

Thus, we can obtain optimal solutions for the above problem using any network op-

timization package. However, doing so requires explicit construction of the network

in Fig. 3·1, which requires creating a large number of additional arcs in the network.

In our development below, we exploit the special structure of the network problem

to develop a fast algorithm that avoids this extra construction.

3.2.3 Duality and Complementary Slackness

The Lagrangian of the primal is

L(x,y,ds,dt, λ)

=
K∑
k=1

N∑
j=1

−pkjykj +
M∑
m=1

dsm(Nm −
∑

k:(m,k)∈A

xmk)

+

K∑
k=1

dtk(
∑

m:(m,k)∈A

xmk −
N∑
j=1

ykj) + λ(
K∑
k=1

N∑
j=1

ykj −N)
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Here we let dsm, dtk, and λ be the dual variables, a.k.a. the prices, of source node

sm, sink node tk and the global sink node, respectively. The dual problem is then:

maximize
ds,dt,λ

K∑
k=1

N∑
j=1

min{0, λ− dtk − pkj}+
M∑
m=1

dsmNm − λN

subject to dsm ≤ dtk, ∀(m, k) ∈ A (3.12)

The complementary slackness conditions (see Theorem 9.4 of [Ahuja et al., 1993])

are

dsm < dtk ⇒ xmk = 0,∀(m, k) ∈ A (3.13)

xmk > 0⇒ dsm = dtk,∀(m, k) ∈ A (3.14)

dtk − λ < −pkj ⇒ ykj = 0, ∀k, j (3.15)

0 < ykj < 1⇒ dtk − λ = −pkj, ∀k, j (3.16)

dtk − λ > −pkj ⇒ ykj = 1, ∀k, j (3.17)

By Theorem 9.4 of [Ahuja et al., 1993], if a primal feasible solution {x,y} and a dual

feasible solution {ds,dt,λ} satisfy the complementary slackness conditions (3.13)-

(3.17), then {x,y} is also an optimal solution for the primal problem.

3.3 Fast Algorithm for Homogeneous Agent Search

Here we propose a specialized algorithm for the problem of sparse discrete search

of a stationary object using multiple homogeneous agents without false alarm errors.

Our algorithm is based on primal-dual techniques: it begins with a solution satisfying

complementary slackness. It continually increases the flow and modifies prices until

primal feasibility is achieved, while maintaining complementary slackness at every

iteration. For the purpose of exposition, we show how to track the prices even though

our algorithm does not require the prices to be tracked explicitly.
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Algorithm

Input: A, Nm, pk0, αk, ∀m, k.

Output: xmk,∀(m, k) ∈ A.

Initialization:

Let xmk = 0 and ykj = 0, ∀m, k, j. Compute and insert pk1, ∀k into a max-

oriented binary heap H of size K. Define the available supply at each source

node sm as Rm. Let Rm = Nm, ∀m. Initialize the prices of the sources nodes

to be dsm = 0, ∀m. Initialize the prices of the sink nodes to be dtk = 0, ∀k.

Initialize the price of the global sink node to be λ = maxk pk1. Mark all the

sources and sinks as not eliminated.

Step 1: Repeat until Rm = 0 for all m:

Extract the maximum pk∗j∗ from H. Lower the price of the global sink to

λ = pk∗j∗ . If there are eliminated sources and sinks, lower the price of each such

source or sink

dsm = pk∗j∗ − vsm

dtk = pk∗j∗ − vtk

where vsm, v
t
k are the elimination values for source sm and sink tk, respectively.

a) If the sink node tk∗ is marked as eliminated, continue Step 1.

b) Run Assign-Extra-Demand(tk∗) to find an augmenting path from the sink

node tk∗ to one of the source nodes with available supply and let its re-

turned source index be m∗.

c) If m∗ > 0, decrement Rm∗ ← Rm∗ − 1. Let yk∗j∗ = 1. Insert pk∗,j∗+1 into

H.
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d) Else, identify sm’s and tk’s marked as visited in Assign-Extra-Demand(tk∗)

as an isolated group. Mark them as eliminated, and assign their elimination

value as pk∗j∗ to all such sources and sinks.

e) Return to Step 1.

Step 2: When Rm = 0 for all m, terminate the algorithm.

In the algorithm, we use subroutine Assign-Extra-Demand to search for an aug-

menting path from a sink node tk∗ that requires assignment of an extra unit of demand

to a source node that has available supply. It visits a group of source and sink nodes

whose prices will be updated implicitly.

The subroutine is described as follows:

Assign-Extra-Demand(tk∗)

Initialization:

Begin with a queue Q and a set of visited nodes V , both containing the single

node tk∗ . Define available supply at each source sm as Rm. Initialize an array

of predecessors for all sources and sinks as pred(sm) = −1, pred(tk) = −1.

Step 1: Remove the top element in Q:

a) If the element is a sink tk, check each source sm such that: (1) sm is not

eliminated; (2) (m, k) ∈ A; (3) sm 6∈ Q; (4) sm 6∈ V . Add each such source sm

to V . If one source sm has Rm > 0, an augmenting path has been found; set

tk = pred(sm) and go to Step 3 below. Else, add each such sm to Q and set

pred(sm) = tk.
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b) If the element is a source sm and Rm = 0, find each sink tk such that: (1) tk is

not eliminated; (2) (m, k) ∈ A; (3) xmk > 0; (4) tk 6∈ Q; (5) tk 6∈ V . Add each

such sink tk to Q and V , and set pred(tk) = sm.

Step 2: If Q is not empty, repeat Step 1. Else, terminate the subroutine and return

-1.

Step 3: An augmenting path has been found. Set m∗ = m. Then, recursively,

starting with s = sm, perform an augmentation as follows:

i. For source sm, find tk = pred(sm). Increment xmk ← xmk + 1.

ii. For sink tk, if pred(tk) = −1, finish. Else, let sm = pred(tk) and decrement

xmk ← xmk − 1.

Terminate the subroutine and return m∗, the index of the source node providing the

supply for the extra unit of demand at sink tk∗ .

If Assign-Extra-Demand fails to assign the extra unit of demand to any supply

source, we identify all source and sink nodes marked as visited during the search as

an isolated group, and remove them from further consideration in the subsequent

assignment problems by marking their status as eliminated.

Our algorithm has two notable features. First, it exploits the implicit ordering of

pkj’s for the same location and computes pkj’s on the fly only when they are needed.

This is assisted by maintaining a max-oriented heap. Second, it uses successive short-

est path backtracking for feasible flow augmentations, and updates prices implicitly

such that dual feasibility and complementary slackness are maintained. At each itera-

tion an element is popped out of the heap, creating one unit of demand at a sink. The

subroutine Assign-Extra-Demand then tries to assign this extra unit of demand to a
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source with available supply. It marks a group of source and sink nodes as visited,

and raise the prices of these nodes while maintaining dual feasibility and complemen-

tary slackness. When Assign-Extra-Demand fails to find an augmenting path, we

identify an isolated group, which no longer need to be considered in the algorithm for

augmentation.

We now show that the algorithm maintains dual feasibility and complementary

slackness.

Theorem 3.3.1. Assume that the prices {ds,dt, λ} are updated as described in the

algorithm. Then, the prices {ds,dt, λ} satisfy the dual feasibility condition (3.12)

at each iteration. Also, together with the primal variables {x,y}, they satisfy the

complementary conditions (3.13)-(3.17) at each iteration.

Proof. The dual constraints are (3.12) (restated here):

dsm ≤ dtk, ∀(m, k) ∈ A (3.12)

and the complementary slackness conditions (3.13)-(3.17) (restated here):

dsm < dtk ⇒ xmk = 0,∀(m, k) ∈ A (3.13)

xmk > 0⇒ dsm = dtk,∀(m, k) ∈ A (3.14)

dtk − λ < −pkj ⇒ ykj = 0, ∀k, j (3.15)

0 < ykj < 1⇒ dtk − λ = −pkj, ∀k, j (3.16)

dtk − λ > −pkj ⇒ ykj = 1, ∀k, j (3.17)

Initially,

xmk = 0, ∀m, k
ykj = 0, ∀k, j
dsm = 0, ∀m
dkt = 0, ∀k
λ = max

k
pk1

Since dsm = dtk = 0 for all (m, k) ∈ A, the prices are dual feasible, and the
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assignments xmk = 0 satisfy complementary slackness. Note also that, by choice

of λ, we have dtk − λ ≤ −pkj for all k, j, so the assignments ykj = 0 also satisfy

complementary slackness.

Now, consider any algorithm iteration before any nodes are marked as eliminated.

Let pk∗j∗ denote the value extracted from the heap H. This iteration will lower λ to

pk∗j∗ . It will also increase yk∗j∗ to 1, and modify several xmk to be non-zero or zero.

Note that dsm = dtk for all (m, k) ∈ A still, so the prices are dual feasible, and any

assignments xmk ≥ 0 satisfy complementary slackness. Thus, the main item to verify

is that the previous assignments ykj = 1 still satisfy complementary slackness with

the new price λ, the new assignment yk∗j∗ = 1 satisfies complementary slackness, and

the previous assignments ykj = 0, k 6= k∗, j 6= j∗ satisfy complementary slackness.

Since now λ = pk∗j∗ , we have dtk∗ − λ = −pk∗,j∗ , so the new assignment yk∗j∗ = 1

satisfies complementary slackness. Furthermore, for any ykj = 1 prior to the iteration,

since λ was not increased in the iteration, we still have dtk−λ ≥ −pkj; thus they satisfy

complementary slackness. If ykj = 0 prior to the iteration, we have −λ ≤ −pkj at

the beginning of the iteration. Since pk∗j∗ is the largest value in the heap H, the new

value of λ will still satisfy −λ ≤ −pkj, yjk = 0 after the iteration will still satisfy

complementary slackness.

Now consider the output of an iteration where eliminated nodes are present. In

such an iteration, none of the arc flows involving eliminated nodes change, as the

augmentation path only searches for sources and sinks that are not eliminated. How-

ever, the prices of eliminated nodes change, as does the price of the global sink, so we

must guarantee that these price changes maintain dual feasibility and complementary

slackness.

The only way to violate dual feasibility is for the price of a sink tk that is eliminated

to drop below the price of a source sm, where (m, k) ∈ A. If a sink tk is eliminated,

any source sm such that (m, k) ∈ A is also eliminated in the same isolated group,

because it will be visited by Assign-Extra-Demand. Hence, the elimination values

will satisfy vsm = vtk, and the resulting prices will satisfy dsm = dtk, and hence will not

violate dual feasibility.

Let’s show that modifying the prices maintains complementary slackness for all

flows xmk > 0 at the end of the iteration. As discussed earlier, if a sink tk is elimi-

nated, then any source sm such that (m, k) ∈ A is also eliminated and has the same

elimination value as tk. As such, the new source and sink prices will be equal after

modification, and the original flows xmk will satisfy complementary slackness. If a
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sink tk is not eliminated, any of the flows modified by the augmenting path will in-

volve only sources and sinks that are not eliminated and thus their prices start and

remain at value 0. Hence, all the flows xmk resulting from the augmentation will

satisfy complementary slackness.

The final step is to establish that the flows ykj satisfy complementary slackness

with the new prices dtk and λ. For any tk that is not eliminated, its price dtk remains

zero, and all flows ykj will satisfy complementary slackness by the same argument as

above, because pk∗,j∗ is the largest value in the heap H. Hence, consider a node tk

that has been eliminated. If ykj = 1, the elimination value vtk ≤ pkj, since it was set

in an iteration when no augmentation was possible, and thus after ykj > 0. Then,

dtk = pk∗,j∗ − vtk, and λ = pk∗,j∗ . Thus, dtk − λ = −vtk ≥ −pkj and ykj = 1 satisfies

complementary slackness. If ykj = 0, the elimination value vtk ≥ pkj because of the

heap property. Then, dtk − λ = −vtk ≤ −pkj and ykj = 0 satisfies complementary

slackness.

The proof is now complete. �

The advantage of our algorithm is that it maintains a set of prices for sources

and sinks so that all the arcs between non-eliminated sources and non-eliminated

sinks have zero reduced costs. As such, finding an augmenting path can be done by

breadth-first search, instead of a more complex shortest path algorithm with reduced

costs. Furthermore, since the only price changes are for nodes that are eliminated

(and the global sink), the entire algorithm can be executed without updating any

dual prices, leading to efficient implementation.

Next, we show that the algorithm always terminates with finite time complexity,

and analyze its time complexity.

Theorem 3.3.2. The algorithm terminates in finite time, with complexity is O(N |A|),

where N =
∑M

m=1 Nm is the total supply from all source nodes, and |A| is the cardi-

nality of the set of all accessibility pairs.

Proof. We first show finite time termination. Each iteration of the algorithm either

successfully assigns one unit of demand to some supply source, or identifies and

eliminates an isolated group which consists of at least one source node and one sink

node. Given the connectivity assumptions, there is a feasible assignment of all source
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supply to sink nodes. Since we have a finite number of source and sink nodes, and

a finite integer number of supply, the algorithm will eventually terminate. Upon the

termination of the algorithm, due to the assumption that each location is accessible

by at least one agent and each agent can access at least one location, there will be no

remaining unassigned supply.

In terms of computation, the overhead for constructing the binary heap is O(K).

The worst-case running time for heap insertion and deletion is O(log(K)). The worst-

case running time for finding an augmenting path is O(|A|) since we might have to

explore every arc between the source and sink nodes. At each iteration of the al-

gorithm, the algorithm may successfully assign one unit of supply and do heap in-

sertion and deletion, or fail to find an augmenting path. There are N =
∑M

m=1 Nm

units of supply to assign, and there are at most min(M,K) failures since each fail-

ure eliminates at least one source and one sink. Thus, the overall running time is

O
(
K + N(log(K) + |A|) + min(M,K)|A|

)
= O

(
N |A|

)
since max(M,K) ≤ |A| and

min(M,K) ≤M ≤ N . �

In Table 3.1, we provide the time complexity of several general min-cost flow

algorithms. It can be seen that our specialized algorithm for solving the integer

subproblems has a significantly smaller time complexity compared to general min-

cost flow algorithms.

Our algorithm also works for the problem considered in [Song and Teneketzis,

2004], in which every agent can access all the locations. Assuming that there are

M agents, the amortized complexity of finding an augmenting path is O(1), so the

complexity of our algorithm becomes O(N log(K)). In contrast, the algorithm of

[Song and Teneketzis, 2004] requires O(KN/M log(KN/M)), with the assumption

that K > M , which is slower than our algorithm.

The algorithm constructs an optimal allocation in that the dual prices assigned by

the algorithm are feasible and satisfy complementary slackness along with the primal

feasible allocation constructed by the algorithm.

Theorem 3.3.3. The algorithm constructs an optimal multi-agent search allocation.
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Table 3.1: Time complexity of general min-cost flow algorithms when
applied on the integer subproblems ( [Ahuja et al., 1993, Kelly and
O’Neill, 1991]). M is the number of agents, K is the number of lo-
cations, and |A| is the cardinality of the set of all accessibility pairs.
Let Nn = M + K be the number of nodes, Na = |A| + NK be the
number of arcs, U = M be the largest supply/demand or arc capacity,
and C = max1≤k≤K{−qk,1} be the largest cost coefficient.

Capacity scaling
algorithm [Ahuja et al., 1993] O

(
NaNn

(
Na +Nn log(Nn)

))
Cost scaling

algorithm [Ahuja et al., 1993] O
(
N2
nNa log

(
NnC

))
Double scaling

algorithm [Ahuja et al., 1993] O
(
NnNa log(U) log

(
NnC

))
Minimum mean cycle-

canceling algorithm [Ahuja et al., 1993] O
(
N2
nN

3
a log(Nn)

)
Repeated capacity

scaling algorithm [Ahuja et al., 1993] O
(
N2
a log(Nn)(Na +Nn log(Nn))

)
Enhanced capacity

scaling algorithm [Ahuja et al., 1993] O
(
Na log(Nn)(Na +Nn log(Nn))

)
Network simplex

algorithm [Kelly and O’Neill, 1991] O
(

(Nn +Na)NnNaC
2U
)

Proof. The algorithm constructs a primal feasible solution {x,y} which satisfies all

the constraints of the primal problem. Also, if we track prices {ds,dt, λ} as described

in the algorithm, the dual feasibility and complementary slackness are maintained

throughout the algorithm by Theorem 3.3.1. Therefore, the solution {x,y} is also

primal optimal. �

3.4 Heterogeneous Agent Search

3.4.1 Set Based Formulation

When the agents are heterogeneous, the probabilities of detection depend on both

agents and locations. Recall that the detection probability at location k using agent

m is αmk and the problem is to find an agent allocation x = {xmk,∀m, k} to maximize

the probability of detecting the object:

maximize
x

K∑
k=1

pk0

(
1−

M∏
m=1

(1− αmk)xmk
)

= 1−
K∑
k=1

pk0

M∏
m=1

(1− αmk)xmk (3.1)
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subject to
∑

k:(m,k)∈A

xmk ≤ Nm, ∀m (3.2′)

xmk ∈ {0, 1, . . . , Nm}, ∀(m, k) ∈ A (3.3)

xmk = 0, ∀(m, k) 6∈ A (3.4)

Note that due to the monotonicity of the objective function, the inequality constraint

(3.2′) is equivalent to the equality constraint (3.2).

This problem is known to be NP-hard [Lloyd and Witsenhausen, 1986,Ahuja et al.,

2007]. Approximation schemes such as branch-and-bound and local search have been

proposed for these problems [Ahuja et al., 2007].

An alternative formulation of the problem is based on a monotone submodular

objective function and matroid constraints. Assume that we split agent m into Nm

micro agents, where Nm is the budget of the original agent m. Denote the j-th micro

agent of the original agent m by 〈m, j〉. Recall that N =
∑M

m=1Nm is the total budget

of all original agents. So we have an equivalent problem with N micro agents. Each

micro agent 〈m, j〉 (j = 1, . . . , Nm) has budget N〈m,j〉 = 1.

Let E be the set of all accessibility pairs after the split. Denote by the subset of E
as E〈m,j〉 = {(〈m, j〉, k)|k ∈ {1, . . . , K}, (〈m, j〉, k) ∈ E}, the set of accessibility pairs

of micro agent 〈m, j〉. Note that E〈m,j〉 ∩ E〈m′,j′〉 = ∅ if m 6= m′ or j 6= j′, and

E =
M⋃
m=1

Nm⋃
j=1

E〈m,j〉

so that {E〈m,j〉} is a partition of E . A feasible assignment S from the agents to the

locations is a subset S ⊂ E such that

|S ∩ E〈m,j〉| ≤ 1, ∀〈m, j〉
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The value of this feasible assignment is given by

f(S) = 1−
K∑
k=1

pk0

∏
(〈m,j〉,k)∈S

(1− αmk) (3.18)

f(S) has the following properties:

Lemma 3.4.1. f(S) is increasing and submodular in S.

Proof. Given two feasible assignments S ′ ⊂ S, it is easy to see that f(S ′) ≤ f(S),

because each term of the sum in (3.18) is smaller in f(S ′), as all the products in S ′

are in S and S has additional products. Thus, f(S) is increasing.

Furthermore, given S ′ ⊂ S and e = (〈m̃, j̃〉, k̃) /∈ S

f(S ′ ∪ {e})− f(S ′) = pk0αm̃,k̃
∏

(〈m,j〉,k)∈S′
(1− αmk)

≥ pk0αm̃,k̃
∏

(〈m,j〉,k)∈S

(1− αmk)

= f(S ∪ {e})− f(S)

Thus, f(S) is submodular in that it has the diminishing return property [Fisher

et al., 1978]. �

Let the collection of feasible assignments be I. Then (E , I) has the following

property:

Lemma 3.4.2. The pair (E , I) is a matroid.

Proof. A pair (E , I) where E is a finite set and I is a family of subsets of E is a

matroid if [Welsh, 1976]:

1. ∅ ∈ I.

2. (Hereditary Property) For each S ′ ⊂ S ⊂ E , if S ∈ E then S ′ ∈ E .

3. (Augmentation Property) If S ∈ I, S ′ ∈ I and |S ′| < |S|, then there exists

e ∈ S \ S ′ such that S ′ ∪ {e} ∈ I.
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For any feasible assignment S ⊂ I, any S ′ ⊂ S is also a feasible assignment,

satisfying the hereditary property of independent sets required for a matroid.

Furthermore, assume we have two feasible assignments S, S ′ such that |S ′| < |S|.
Then, there exists a micro agent 〈m, j〉 such that (〈m, j〉, k) ∈ S, and (〈m, j〉, k′) /∈ S ′
for all k′ = 1, . . . , K. This implies that S ′∪{(〈m, j〉, k)} is also a feasible assignment,

satisfying the augmentation property and establishing that (E , I) is a matroid. �

Hence, the equivalent problem of maximizing (3.18) subject to S ∈ I is a sub-

modular maximization problem subject to a matroid constraint.

3.4.2 A Greedy Algorithm

We propose a simple greedy algorithm here. Before we present the algorithm, we first

show how to compute the marginal gain when adding one more element to a feasible

set S.

Lemma 3.4.3. Given a feasible assignment S and a micro agent 〈m′, j′〉 such that

S ∩ E〈m′,j′〉 = 0, then for (m′, k′) ∈ E〈m′,j′〉,

f(S ∪ {(m′, k′)})− f(S) =
[
pk′0

∏
(〈m,j〉,k′)∈S

(1− αmk′)
]
αm′k′

Proof.

f(S ∪ {(m′, k′)})
=1−

∑
k 6=k′

pk0

∏
(〈m,j〉,k)∈S

(1− αmk)− pk′0
∏

(〈m,j〉,k′)∈S

(1− αmk′)(1− αm′k′)

and

f(S})
=1−

∑
k

pk0

∏
(〈m,j〉,k)∈S

(1− αmk)

=1−
∑
k 6=k′

pk0

∏
(〈m,j〉,k)∈S

(1− αmk)− pk′0
∏

(〈m,j〉,k′)∈S

(1− αmk′)
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Thus,

f(S ∪ {(m′, k′)})− f(S) =
[
pk′0

∏
(〈m,j〉,k′)∈S

(1− αmk′)
]
αm′k′

�

From Lemma 3.4.3, we can keep track of the values pk0

∏
(〈m,j〉,k)∈S(1 − αmk) for

all k in a vector V . For a given agent m, to pick the location k that yields the largest

marginal gain, we only need to pick k∗ = arg maxk:(m,k)∈A V (k)αmk. The algorithm

thus goes as follows:

• Start with S0 = ∅ (i.e., x = 0) and i = 1. Define available supply at each source

as Rm and let Rm = Nm. Let V = (p10, . . . , pK0).

• For m = 1, . . . ,M :

– For j = 1, . . . , Nm:

∗ Find e∗ = arg maxe∈E〈m,j〉
[
f(Si−1 ∪ {e})− f(Si−1)

]
. This is equivalent

to finding

k∗ = arg max
k:(m,k)∈A

V (k)αmk

where V (k) is the k-th element of V .

∗ Let Si = Si−1 ∪ {e∗} and xmk∗ = xmk∗ + 1. Update V(k∗) = V(k∗)(1 −
αmk∗). Increment i = i+ 1.

• Return the greedy solution Sgreedy = SN .

Theorem 3.4.4. The value of the solution Sgreedy returned by the greedy algorithm

above is at least 1
2

of the value of the optimal solution S∗.

Proof. Denote the solution returned by the greedy algorithm by Sgreedy = SN and

the optimal solution by S∗. Let T ∗ = S∗\Sgreedy and denote the elements in T ∗ by

{e∗1, . . . , e∗|T ∗|}.
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Let T〈m,j〉 = (S∗∩E〈m,j〉)\Sgreedy, ∀〈m, j〉. Since {E〈m,j〉} is a partition of E , {T〈m,j〉}
is a partition of T ∗. Then,

f(S∗) ≤f(Sgreedy ∪ S∗)
=f(Sgreedy ∪ T ∗)

=f(Sgreedy) +

|T ∗|∑
l=1

[f(Sgreedy ∪ {e∗1, . . . , e∗l })− f(Sgreedy ∪ {e∗1, . . . , e∗l−1})]

≤f(Sgreedy) +

|T ∗|∑
l=1

[f(Sgreedy ∪ {e∗l })− f(Sgreedy)] (3.19)

=f(Sgreedy) +
∑
e∈T ∗

[f(Sgreedy ∪ {e})− f(Sgreedy)]

=f(Sgreedy) +
M∑
m=1

Nm∑
j=1

∑
e∈T〈m,j〉

[f(Sgreedy ∪ {e})− f(Sgreedy)]

≤f(Sgreedy) +
M∑
m=1

Nm∑
j=1

∑
e∈S∗∩E〈m,j〉

[f(Sgreedy ∪ {e})− f(Sgreedy)]

≤f(Sgreedy) +
N∑
i=1

∑
e∈S∗∩E〈m,j〉

[f(Si−1 ∪ {e})− f(Si−1)] (3.20)

≤f(Sgreedy) +
N∑
i=1

[f(Si)− f(Si−1)] (3.21)

=2f(Sgreedy)

Inequalities (3.19) and (3.20) are due to the submodularity of f(S). Inequality

(3.21) holds since the greedy algorithm finds the best element in E〈m,j〉 that augments

the previous set Si−1 and |S∗ ∩ E〈m,j〉| = 1. �

This approximation ratio can be further improved to (1− 1
e
) by using a randomized

algorithm with pipage rounding and a continuous greedy process [Calinescu et al.,

2011].
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3.4.3 A Block Coordinate Ascent Algorithm

In this section, we develop another algorithm based on block coordinate ascent meth-

ods. The algorithm picks one agent m̃ at each iteration and solves an equivalent

single-agent allocation problem:

maximize
xm̃=(xm̃1,...,xm̃K)

K∑
k=1

qk0(1− (1− αm̃k)xm̃k) (3.22)

subject to
∑

k:(m̃,k)∈A

xm̃k = Nm̃ (3.23)

xm̃k ∈ {0, 1, . . . , Nm̃}, ∀(m̃, k) ∈ A (3.24)

xm̃k = 0, ∀(m̃, k) 6∈ A (3.25)

where qk0 = pk0

∏
m6=m̃(1 − αmk)

xmk for k = 1, . . . , K are constants. Its objective

function (3.22) is obtained by fixing the allocations of the other M − 1 agents and

adding a constant
∑K

k=1 qk0 − 1 in the multi-agent objective function (3.1).

To solve the equivalent single-agent problem (3.22)–(3.25), note that each term in

(3.22) can be transformed into linear form:

qk0(1− (1− αm̃k)xm̃k) = maximize
{ykj}

Nm̃∑
j=1

qkjykj

subject to

Nm̃∑
j=1

ykj = xm̃k

ykj ∈ {0, 1}, ∀(m̃, k) ∈ A, j

ykj = 0, ∀(m̃, k) 6∈ A, j

where qkj = qk0(1− αm̃k)j−1αm̃k.

Thus, the problem (3.22)–(3.25) becomes:
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maximize
xm̃=(xm̃1,...,xm̃K)

K∑
k=1

Nm̃∑
j=1

qkjykj (3.26)

subject to
∑

k:(m̃,k)∈A

xm̃k = Nm̃ (3.27)

Nm̃∑
j=1

ykj = xm̃k,∀k (3.28)

ykj ∈ {0, 1}, ∀(m̃, k) ∈ A, j (3.29)

ykj = 0, ∀(m̃, k) 6∈ A, j (3.30)

To solve (3.26)–(3.30), one needs to find the Nm̃ largest values of qkj for k such

that (m̃, k) ∈ A and j = 1, . . . , Nm̃. An efficient implementation is to use a max-

oriented heap. Initially, let xm̃k = 0 for k = 1, . . . , K and let Rm̃ = Nm̃. Insert qk0αm̃k

for k such that (m̃, k) ∈ A into a max-oriented heap. Then, while Rm̃ > 0, repeat:

(a) pop the smallest element v∗ from the heap which corresponds to location k∗; (b)

increment xm̃k∗ = xm̃k∗ + 1 and decrement Rm̃ = Rm̃ − 1; (c) insert v∗(1− αm̃k) into

the heap.

Our block coordinate ascent algorithm is as follows:

• Initialization: Let xmk, ∀m, k have arbitrary values. They do not have to be

either integer-valued or feasible.

• Step 1: For m̃ = 1, . . . ,M , solve the equivalent single-agent allocation problem

for agent m̃ (3.22)–(3.25) using the heap implementation.

• Step 2: Repeat Step 1 until convergence, i.e., the objective value of the multi-

agent problem (3.1) does not improve after one cycle of iterations.

3.4.4 Upper Bound of the Optimal Value

Consider the following nonlinear program which is a continuous relaxation of the

integer nonlinear program (3.1)–(3.4):
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maximize
x

1−
K∑
k=1

pk0

M∏
m=1

(1− αmk)xmk (3.31)

subject to
∑

k:(m,k)∈A

xmk = Nm, ∀m (3.32)

0 ≤ xmk ≤ Nm, ∀(m, k) ∈ A (3.33)

xmk = 0, ∀(m, k) 6∈ A (3.34)

It is easy to see that the optimal value of the relaxed problem (3.31)–(3.34) is

an upper bound of the integer nonlinear program (3.1)–(3.4). Also, the objective

function (3.31) is concave and continuously differentiable, since it is a sum of negative

exponential functions in the decision variables.

We develop a block coordinate ascent algorithm to solve this relaxed problem. By

optimizing over xm̃ = (xm̃1, . . . , xm̃K) for agent m̃ while fixing the allocations of the

other M − 1 agents, we get an equivalent single-agent allocation problem:

maximize
xm̃=(xm̃1,...,xm̃K)

1−
∑

k:(m,k)∈A

qk0(1− αm̃k)xm̃k

subject to
∑

k:(m̃,k)∈A

xm̃k = Nm̃

xm̃k ≥ 0, ∀(m̃, k) ∈ A

where qk0 = pk0

∏
m 6=m̃(1− αmk)xmk . Its Lagrangian function is

L(xm̃, λ) = 1−
∑

k:(m̃,k)∈A

qk0(1− αm̃k)xm̃k + λ(
∑

k:(m̃,k)∈A

xm̃k −Nm̃)

If x∗m̃ is a global maximum, then there exists a scalar λ∗ such that

x∗m̃ ∈ arg max
xm̃≥0

L(xm̃, λ
∗)

The optimality conditions for an orthant constraint yield
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−qk0 ln(1− αm̃k)(1− αm̃k)x
∗
m̃k + λ∗ ≤ 0, k = 1, . . . , K

−qk0 ln(1− αm̃k)(1− αm̃k)x
∗
m̃k + λ∗ = 0, if x∗m̃k > 0

Thus, the equivalent single-agent problem can be solved using a scalar optimiza-

tion technique to find λ∗ and the corresponding x∗m̃ that satisfy the feasibility con-

straints and the optimality conditions.

To the multi-agent relaxed problem, we can iteratively solve equivalent single-

agent problems, for m̃ = 1, . . . ,M , until convergence. It converges to a global maxi-

mum.

Theorem 3.4.5. The block coordinate ascent algorithm which iteratively solves equiv-

alent single-agent problems finds a global maximum of the multi-agent relaxed problem.

Proof. The objective function (3.31) is continuously differentiable and concave, maxi-

mizing over some xm̃ at each iteration. The feasible sets of xm̃ are compact and convex

for all m̃, as is the feasible set of x. By Proposition 6 of [Grippo and Sciandrone,

2000], the limit point of the block coordinate ascent algorithm is a local maximum of

(3.31), which is also a global maximum due to the concavity of (3.31). �

3.5 Experiments

3.5.1 Experiments for Homogeneous Agent Search

In this section, we perform four experiments to compare the running time of our

algorithm with three general min-cost flow algorithms: the cost scaling algorithm,

the network simplex algorithm, and the capacity scaling algorithm. The cost scaling

algorithm used here is an efficient implementation by Goldberg [Goldberg, 1997],

known as CS2. The network simplex algorithm and the capacity scaling algorithm

used here are implemented in the LEMON graph library [Dezső et al., 2011]. It is

worth noting that these algorithms require integral arc costs, so we truncated the

fractional costs in our models to 5 significant digits and multiplied them by 105.
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We conduct the experiments using the C language on a laptop computer with

Intel i7-4600M processor and 8GB RAM. For each experiment, we randomly generate

10 instances. Each instance has 200 agents and 20000 locations. For each instance,

we randomly generate the prior probability pk0 and the probability of detection αk at

each location k. We also choose a sparsity ratio defined as:

r =
|A|
MK

where A is the accessibility set M is the number of agents, and K is the number of

locations. We randomly generate the accessibility set A with the given sparsity ratio.

In the first experiment, we let each agent have a constant budget equal to 10,

and set the sparsity ratio to be 5%. In the second experiment, we still let each agent

have a constant budget equal to 10, but reduce the sparsity ratio to 3% to make the

corresponding network flow graph more sparse. In the third experiment, we randomly

generate budgets for each agent while making the total budgets of all agents sum up

to 10MK, and set the sparsity ratio to be 5%. In the fourth experiment, we randomly

generate budget for each agent while making the total budgets of all agents sum up

to 10MK, and set the sparsity ratio to be 3%.

For each experiment, we run all four algorithms and average the computation time

over 10 random instances. Computation time in milliseconds is given in Table 3.2.

From the results, we can see that our algorithm is faster by factors of 20 to 50 than

optimized library algorithms.

In addition, it can be seen that the more sparse the problem is, the longer it

takes to solve the problem for any algorithm. For the same sparsity ratio, problems

with random supply take longer to solve than problems with constant supply for any

algorithm. We can also see that our algorithm scales the best when the problems

become more sparse and random.
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Table 3.2: Comparison of computation time for four different algo-
rithms.

Algorithms
200×20000,
5% sparsity,

const. supply

200×20000,
3% sparsity,

const. supply

200×20000,
5% sparsity,
rand. supply

200×20000,
3% sparsity,
rand. supply

Our algorithm 3.2ms 4.6ms 4.2ms 12.5ms
Cost scaling (CS2) 75.8ms 186ms 435ms 764ms
Network simplex 213ms 1870ms 1214ms 3220ms
Capacity scaling 117ms 311ms 625ms 987ms

3.5.2 Experiments for Heterogeneous Agent Search

In this section, we do experiments for the case of multiple heterogeneous agents. We

generate 5 models. Each model has 20 agents and 400 locations. The sparsity ratio

is set to 5%. Each agent has a budget of 10. We compute the upper bound of the

optimal values by solving the relaxed problem. We compare the objective values (final

probability of detection) of the greedy algorithm in Section 3.4.2, the block coordinate

ascent algorithm (the initial assignment x is using the optimal solution for the relaxed

problem) in Section 3.4.3, and a purely random approach which randomly generates

1000 feasible search plans and picks the one with the best value.

The results are given in Table 3.3. From the results, we can see that the greedy

algorithm has found solutions slightly better than the block coordinate ascent algo-

rithm. Both algorithms have found solutions that are close to the upper bound and

are much better than the purely random approach.

Table 3.3: Comparison of objective values found by different algo-
rithms for heterogeneous agent search. The asterisk (∗) indicates the
best value found.

Model No. Greedy
Block

coordinate
ascent

Purely
random

Upper
bound

1 0.583∗ 0.574 0.353 0.611
2 0.558∗ 0.552 0.333 0.610
3 0.585∗ 0.573 0.356 0.612
4 0.550∗ 0.541 0.337 0.603
5 0.576∗ 0.569 0.349 0.605
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Chapter 4

Multi-Agent Sparse Search of a Markovian

Moving Object with Simple Error Models

In this chapter, we study the problem of searching for a Markovian object with mul-

tiple search agents in discrete time and space. Similar like in Chapter 3, we restrict

the agents to have limited visibilities, so each agent can only search a subset of the

locations at each time (i.e. a sparse search problem). We generalize the approach of

Chapter 3 to search for Markovian objects, formulating the problem as an integer non-

linear programming problem. We develop necessary conditions for an optimal search

plan, extending results in [Brown, 1980, Washburn, 1983]. We develop a forward-

and-backward (FAB) algorithm which repeatedly solves subproblems in both forward

and backward passes and generates solutions satisfying the necessary conditions. It

is essentially a block coordinate descent algorithm and may not converge to globally

optimal solutions. For the special case where the probabilities of detection depend

only on the location being searched and the time of search (but not the agent), the

coordinate descent iterations reduce to the solution of an equivalent stationary target

search problem using the fast algorithms of Chapter 3. To improve the quality of the

solutions, we develop a convex relaxation of the integer programming problem, and

provide coordinate descent algorithms for obtaining optimal solutions. These relaxed

solutions are used to generate random multiple starting solutions for the iterative in-

teger coordinate descent algorithms. We illustrate the performance of our algorithms

with experiments and compare the results with alternative algorithms in [Royset and
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Sato, 2010] based on combinatorial techniques.

We also address the heterogeneous agent search problem where the probabilities

of detection depend on the location, the time period as well as the agent. We for-

mulate an integer nonlinear program, and show that there is an equivalent set based

formulation with a monotone submodular objective function and matroid constraints.

We propose two greedy algorithms, and show that a greedy-style algorithm is guar-

anteed to produce a solution with value at least 1
2

of the optimal objective value.

We also provide a lower bound of the optimal objective value (total probability of

non-detection) by solving the relaxed heterogeneous agent search problem.

The chapter is organized as follows: In Section 4.1, we formulate the problem. In

Section 4.2, we present the necessary conditions of optimal search plans for multi-

agent sparse search of a moving object. In Section 4.3.2, we first present the integer

forward-and-backward (FAB) algorithm with arbitrary initial search allocation. We

give a counterexample that the algorithm does not find an optimal plan of the integer

problem. We propose a convex relaxation of the integer problem, and show that by

applying the block coordinate descent method we can find an optimal solution of the

relaxed problem. Then we propose a two-stage FAB algorithm. In Section 4.4, we

study the general case of heterogeneous agents where the probabilities of detection

also depend on agents. Section 4.5 contains the experiment results.

4.1 Problem Formulation

Consider searching a moving object hidden in one of K locations with M agents in

T discrete time periods. The object moves according to a known time-homogeneous

Markov chain with transition probability matrix P where ρij denotes the probability

of the object moving from location i to location j in consecutive time periods. Let

xt denote the object location at time t, and let x denote the trajectory of the object.
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Assume that before any searches take place, the prior probability vector of the object

over locations is π1 = [π1,1, . . . , π1,K ].

Each agent can search only a subset of the locations. Define an accessibility pair

(m, k) if agent m has access to location k. Let A denote the set of all accessibility

pairs. Without loss of generality, assume that each agent can access at least one

location and each location is accessible to at least one agent.

Assume that an agent detects the object at its accessible location k with proba-

bility αk, if the object is at location k. Note that the probability of detection only

depends on the location, but not on the agent. If the object is not at location k, a

search of the location always yields no detection. Assume that agent observations are

conditionally independent across locations and time, given current object and agent

locations.

Let bt,m,k ∈ {0, 1} denote whether agent m searches location k at time t. Agent

m can search Nm locations at each time. Hence,
∑

k:(m,k)∈At bt,m,k = Nm for all t and

m. Let bt = {bt,m,k, ∀(m, k) ∈ A} be the search allocation for time t. Our objective is

to find a finite-horizon search allocation b = [b1, . . . , bT ] to minimize the probability

of not detecting the object in T time periods.

With the above notation, the probability that an object at location xt at time t

is not detected given bt is

Pmiss(xt, bt) =
M∏
m=1

(1− αt,m,xt)bt,m,xt

Let p(x) denote the probability that the object follows trajectory x. Then, the

probability of not detecting the object given a search b is

f(b) =
∑
x

p(x)
T∏
t=1

Pmiss(xt, bt)
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=
∑
x

p(x)
T∏
t=1

M∏
m=1

(1− αt,m,xt)bt,m,xt (4.1)

The optimal multi-agent sparse search problem is then

minimize
b

f(b) =
∑
x

p(x)
T∏
t=1

M∏
m=1

(1− αt,m,xt)bt,m,xt (4.2)

subject to
∑

k:(m,k)∈At

bt,m,k = Nm, ∀t,m (4.3)

bt,m,k ∈ {0, . . . , Nm}, ∀t, ∀(m, k) ∈ At (4.4)

bt,m,k = 0, ∀t, ∀(m, k) 6∈ At (4.5)

When the object motion is Markovian, the objective function f(b) has a matrix

form. Let the transition probability matrix P be written as

P =

ρ11 . . . ρK1
...

. . .
...

ρ1K . . . ρKK


P is a left stochastic matrix, i.e., each column of P sums up to one.

Define diagonal matrices It(bt) ∈ RK×K as

It(bt) = diag


∏M

m=1(1− αt,m,1)bt,m,1
...∏M

m=1(1− αt,m,K)bt,m,K


Using the Markov property, we can rewrite the objective function f(b) in matrix

form.

Lemma 4.1.1.

f(b) = 1T
[ T∏
t=1

PIt(bt)
]
π1

where 1 is the column vector [1 1 · · · 1] and 1T its transpose.
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Proof. By Markov property, we can expand p(x) and write f(b) as

f(b) =
K∑

xT=1

· · ·
K∑

x1=1

π1,x1ρx1,x2 · · · ρxT−1,xT

T∏
t=1

M∏
m=1

(1− αt,m,xt)bt,m,xt

Let v(k) denote the k-th element of a vector v. Then,

f(b)

=
K∑

xT=1

· · ·
K∑

x2=1

ρx2,x3 · · · ρxT−1,xT

T∏
t=2

M∏
m=1

(1− αt,m,xt)bt,m,xt

·
( K∑
x1=1

π1,x1ρx1,x2

M∏
m=1

(1− α1,m,x1)
b1,m,x1

)
=

K∑
xT=1

· · ·
K∑

x2=1

ρx2,x3 · · · ρxT−1,xT

T∏
t=2

M∏
m=1

(1− αt,m,xt)bt,m,xt

·
(
π1,1ρ1,x2

M∏
m=1

(1− α1,m,1)b1,m,1 + · · ·+ π1,KρK,x2

M∏
m=1

(1− α1,m,K)b1,m,K
)

=
K∑

xT=1

· · ·
K∑

x2=1

ρx2,x3 · · · ρxT−1,xT

T∏
t=2

M∏
m=1

(1− αt,m,xt)bt,m,xt
(
PI1(b1)π1

)
(x2)

=
K∑

xT=1

· · ·
K∑

x3=1

ρx3,x4 · · · ρxT−1,xT

T∏
t=3

M∏
m=1

(1− αt,m,xt)bt,m,xt

·
( K∑
x2=1

(PI1(b1)π1)(x2)ρx2,x3

M∏
m=1

(1− α2,m,x2)
b2,m,x2

)
=

K∑
xT=1

· · ·
K∑

x3=1

ρx3,x4 · · · ρxT−1,xT

T∏
t=3

M∏
m=1

(1− αt,m,xt)bt,m,xt

·
(

(PI1(b1)π1)(1)ρ1,x3

M∏
m=1

(1− α2,m,1)b2,m,1+

· · ·+ (PI1(b1)π1)(K)ρK,x3

M∏
m=1

(1− α2,m,K)b2,m,K
)

=
K∑

xT=1

· · ·
K∑

x3=1

ρx3,x4 · · · ρxT−1,xT

T∏
t=3

M∏
m=1

(1− αt,m,xt)bt,m,xt
(
PI2(b2)PI1(b1)π1

)
(x3)
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= · · · =
K∑

xT=1

M∏
m=1

(1− αT,m,xT )bT,m,xT
([ T−1∏

t=1

PIt(bt)
]
π1

)
(xT )

=1T IT (bT )
[ T−1∏
t=1

PIt(bt)
]
π1 = 1T

[ T∏
t=1

PIt(bt)
]
π1

The last equality holds since 1TP = 1T . �

4.2 Optimality Conditions

We refer to (4.2)–(4.5) as the integer problem. We now provide necessary conditions

for optimal solutions of the integer problem.

For a given time period t, f(b) can be decomposed as

f(b) = 1T IT (bT )
[ T−1∏
s=t+1

PIs(bs)
]
PIt(bt)

[ t−1∏
s=1

PIs(bs)
]
π1

=
(
1T
[ T∏
s=t+1

Is(bs)P
])
It(bt)

([ t−1∏
s=1

PIs(bs)
]
π1

)
We define column vectors qR(t) ∈ RK and qL(t) ∈ RK , t = 1, . . . , T , as follows:

qR(t) =


π1, if t = 1

PIt(bt)qR(t− 1), if 2 ≤ t ≤ T

(4.6)

qL(t) =


1, if t = T

P T It(bt)qL(t+ 1), if 1 ≤ t ≤ T − 1

(4.7)

Therefore, for any given t, f(b) = qTL(t)It(bt)qR(t).

Given qR(t) and qL(t), define the t-th integer subproblem as

minimize
bt

ft(bt) = qTL(t)It(bt)qR(t) (4.8)
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subject to
∑

k:(m,k)∈A

bt,m,k = Nm, ∀m (4.9)

bt,m,k ∈ {0, . . . , Nm}, ∀(m, k) ∈ At (4.10)

bt,m,k = 0, ∀(m, k) 6∈ At (4.11)

The following result states that an optimal solution for the integer problem must

also be optimal for the related integer subproblems. It extends the necessary condi-

tions in [Washburn, 1980] to multi-agent sparse search.

Theorem 4.2.1 (Necessary Conditions). Let b∗ = [b∗1, . . . , b
∗
T ] denote the optimal

solution for the integer problem. Let qR(t) and qL(t) be computed using all b∗s for

s 6= t. Then, for all t = 1, . . . , T , b∗t must minimize the t-th integer subproblem

(4.8)–(4.11) given qR(t) and qL(t).

Proof. Suppose there exists b̂t such that it is a feasible solution to the t-th subproblem

and ft(b̂t) < ft(b
∗
t ). Let b̂ = [b∗1, . . . , b̂t, . . . , b

∗
T ]. Then,

(1) b̂ is a feasible solution to the integer problem since if b̂t satisfies the feasibility

constraints (4.9)–(4.11) of the t-th subproblem, it also satisfies the feasibility

constraints (4.3)–(4.5) of the integer problem. Besides, b∗s for s 6= t satisfies

(4.3)–(4.5) too.

(2) f(b̂) < f(b∗) since f(b̂) = ft(b̂t) and f(b∗) = ft(b
∗
t ).

This contradicts the assumption. Thus, b∗t must minimize the t-th integer subproblem.

�

The integer subproblems of (4.8)-(4.11) are NP-hard subproblems, as proven in

[Lloyd and Witsenhausen, 1986]. While there are approximate solutions available

such as in [Ahuja et al., 2007] and Chapter 3, there is a subclass of problems which

can be solved exactly by fast algorithms given in Chapter 3: problems for which the

probability of detection αt,m,k does not depend on the agent m. We refer to this

assumption as homogeneous agent assumption, and focus on class of problems with

this assumption next.
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4.3 Algorithms for Homogeneous Agent Search

Under the homogeneous agent assumption, if any two agents can search the same

location at a given time t, their probabilities of detection are equal: αt,m1,k = αt,m2,k ,

αt,k for (m1, k) ∈ At, (m2, k) ∈ At. Then,

It(bt) = diag

 (1− αt,1)
∑M
m=1 bt,m,1

...

(1− αt,K)
∑M
m=1 bt,m,K


The integer subproblem of (4.8)-(4.11) reduces to

IP (t) ≡ minimize
bt

K∑
k=1

qk,0(t)(1− αt,k)
∑M
m=1 bt,m,k (4.12)

subject to
∑

k:(m,k)∈At

bt,m,k = Nm, ∀m (4.13)

bt,m,k ∈ {0, . . . , Nm}, ∀(m, k) ∈ At (4.14)

bt,m,k = 0, ∀(m, k) 6∈ At (4.15)

where qk,0(t) = qL(t)(k)qR(t)(k),∀k. The results in Chapter 3 and [Castañón, 1987]

show that problem IP (t) can be reduced to a min-cost network flow problem, and

solved optimally using fast algorithms as in Chapter 3.

4.3.1 The Integer FAB Algorithm

To solve the dynamic search problem of (4.2)–(4.5), we propose a forward-and-

backward (FAB) algorithm corresponding to block coordinate descent optimization

using the recursions (4.6) and (4.7). The algorithm is presented below.

Integer FAB Algorithm with Arbitrary Initial Allocation
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Input: {αk, k = 1, . . . , K}, π1.

Output: b.

Initialization:

Start with an initial set of allocations b. They do not have to be either feasible

or integer-valued. Using (4.7) and b, compute qL(t) for t = T, . . . , 1, and qR(1).

Step 1 (Integer Forward Pass) Starting from t = 1 to T − 1:

1. Solve the integer subproblem IP (t) in (4.12)–(4.15) to obtain bt.

2. Update qR(t+ 1) using (4.6).

Step 2 (Integer Backward Pass) Starting from t = T to t = 2:

1. Solve the integer subproblem IP (t) in (4.12)–(4.15) to obtain bt.

2. Update qL(t− 1) using (4.7).

Step 3 (Repeat Integer Forward-Backward Passes) Repeat Step 1–2 until

convergence, i.e., after one cycle of iterations f(a) does not improve.

After the first forward pass, the algorithm has a feasible integer solution to the

multi-agent sparse search integer problem of (4.2)–(4.5). Furthermore, each subse-

quent step of the algorithm results in a non-increasing cost while maintaining feasi-

bility. Since the number of feasible integer search allocations is finite, this establishes

the following result:

Theorem 4.3.1. The intermediate values found by the FAB algorithm for multi-agent

sparse search are nonincreasing, and the algorithm converges in finite time.
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Proof. Suppose at one iteration, the t-th integer subproblem is solved and the search

plan changes from b′ to b′′. Let b′ = {b′1, . . . , b′t, . . . , b′T}, then b′′ = {b′1, . . . , b′′t , . . . ,
b′T}. In other words, b′ and b′′ differ only in the t-th time-wise component.

Besides, f(b′) <= f(b′′) since: (1) ft(b
′
t) <= ft(b

′′
t ); (2) f(b′) = ft(b

′
t); (3) f(b′′) =

ft(b
′′
t ). Hence, the intermediate values found by the algorithm are nonincreasing.

Since there are a finite number of feasible solutions and the algorithm terminates

when the objective value does not improve after one cycle of iterations, it will even-

tually converge in finite time. �

Even though the algorithm produces a solution that satisfies the necessary condi-

tions for optimal solutions, it does not in general converge to an optimal solution. In

essence, the combination of the piecewise linear relaxations of the integer subprob-

lems does not result in a convex function of the relaxed variables, and enables the

iteration to stop short of optimality. A simple counterexample to optimality is shown

next:

Let number of agents be M = 1, number of locations be K = 2 and time horizon

be T = 2. Assume that the agent can search both locations. Let the prior probability

vector over locations be π1 = [0.4, 0.6]. Let the probability of detection vector over

locations be α = [0.75, 0.25]. Furthermore, let the Markovian transition probability

matrix be P =

[
0.9 0.1
0.1 0.9

]
.

For this problem, a single round of forward or backward pass in the integer FAB

algorithm consists of only one iteration since T = 2. The algorithm runs as follows:

1) Initially,

b1 = [0, 0], b2 = [0, 0]

qR(1) = [0.4, 0.6], qR(2) = [0, 0]

qL(1) = [1, 1], qL(2) = [1, 1]

The objective value f(b) is 1.
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2) At the 1st iteration, t = 1. If the agent searches location 1, b1 = [1, 0] and

f1(b1) = (1− 0.75)× 0.4 + 1× 0.6 = 0.7. If the agent searches location 2, b1 = [0, 1]

and f1(b1) = 1× 0.4 + (1− 0.25)× 0.6 = 0.85 > 0.7. So the agent will search location

1 at t = 1.

After the iteration, we have

b1 = [1, 0], b2 = [0, 0]

qR(1) = [0.4, 0.6], qR(2) = [0.15, 0.55]

qL(1) = [1, 1], qL(2) = [1, 1]

The objective value f(b) becomes 0.7.

3) At the 2nd iteration, t = 2. If the agent searches location 1, b2 = [1, 0] and

f2(b2) = (1 − 0.75) × 0.15 + 1 × 0.55 = 0.5875. If the agent searches location 2,

b2 = [0, 1] and f2(b2) = 1× 0.15 + (1− 0.25)× 0.55 = 0.5625 < 0.5875. So the agent

will search location 2 at t = 2.

After the iteration, we have

b1 = [1, 0], b2 = [0, 1]

qR(1) = [0.4, 0.6], qR(2) = [0.15, 0.55]

qL(1) = [0.975, 0.775], qL(2) = [1, 1]

The objective value f(b) becomes 0.5625.

4) We do another round of forward and backward passes. The search plan b does

not change, and the algorithm converges.

The search plan returned by the FAB algorithm is to search location 1 at time 1,

then search location 2 at time 2. It has an objective value of 0.5625. However, the

optimal search plan for this example is to search location 2 at time 1, then search
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location 1 at time 2. The optimal objective value is 0.5463. Thus, the FAB algorithm

did not converge to a global minimum for this example.

4.3.2 Convex Relaxation

We can obtain a convex optimization problem if we relax the the integer constraints

(4.15) with an exponential relaxation. We call it the relaxed problem:

minimize
b

f(b) =
∑
x

p(x)
T∏
t=1

(1− αt,xt)
∑M
m=1 bt,m,xt (4.16)

subject to
∑

k:(m,k)∈At

bt,m,k = Nm, ∀t,m (4.17)

bt,m,k ∈ [0, Nm], ∀t,∀(m, k) ∈ At (4.18)

bt,m,k = 0, ∀t,∀(m, k) 6∈ At (4.19)

The relaxed problem can be viewed as allowing agents to spend fractional search

effort in each location. Correspondingly, we define the t-th relaxed subproblem as

RP (t) ≡ minimize
bt

ft(bt) = qTL(t)It(bt)qR(t) (4.20)

subject to
∑

k:(m,k)∈A

bt,m,k = Nm, ∀m (4.21)

bt,m,k ∈ [0, Nm], ∀(m, k) ∈ At (4.22)

bt,m,k = 0, ∀(m, k) 6∈ At (4.23)

The objectives of both of the relaxed problem, as well as the relaxed subproblems

RP (t), can be shown to be convex and continuously differentiable, since they are

sums of exponentials in the decision variables.

Lemma 4.3.2. f(b) is a continuously differentiable convex function.

Proof. We first prove that f(b) is continuously differentiable over the feasible region

of the relaxed problem. Each term in f(b) corresponds to an object motion trajectory.
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Consider a trajectory x and b(x) = (b1,1,x1 , . . . , b1,M,x1 , . . . , bT,1,xT , . . . , bT,M,xT ) ∈
RTM , the term in f(b) that corresponds to x is g(b(x)) = p(x)

∏T
t=1

∏M
m=1(1 −

αt,xt)
bt,m,xt . Since g(b(x)) is continuously differentiable over the feasible region of

b(x), f(b) =
∑
x g(b(x)) is continuously differentiable over the feasible region of b.

We next prove that f(b) is convex over the feasible region of the relaxed problem.

Consider term g(b(x)) of f(b), for any bt′,m′,xt′ ,

∂g(b(x))

∂bt′,m′,xt′
=
[
p(x)

T∏
t=1

M∏
m=1

(1− αt,xt)bt,m,xt
]

ln(1− αt′,xt′ )

Then, for any bt′,m′,xt′ and bt′′,m′′,xt′′ ,

∂2g(b(x))

∂bt′,m′,xt′∂bt′′,m′′,xt′′
=
[
p(x)

T∏
t=1

M∏
m=1

(1− αxt)bt,m,xt
]

ln(1− αt′,xt′ ) ln(1− αt′′,xt′′ )

Define column vector u =
(
u1, . . . ,uT

)
∈ RTM where ut =

(
ln(1 − αt,xt), . . . ,

ln(1− αt,xt)
)
∈ RM for all t. The Hessian matrix ∇2g(b(x)) is equivalent to

∇2g(b(x)) =
[
p(x)

T∏
t=1

M∏
m=1

(1− αxt)bt,m,xt
]
uu′

Then, for any v ∈ RTM ,

v′∇2g(b(x))v =
[
p(x)

T∏
t=1

M∏
m=1

(1− αxt)bt,m,xt
]
‖u′v‖2

2 ≥ 0

So the Hessian matrix of g(b(x)) is positive semidefinite, and g(a(x)) is a convex

function. Since f(a) is the sum of convex functions, it is also a convex function. �

Also note that the constraints on the decision variables are linear, and the feasible

set of decisions is convex and compact. As such, solutions can be obtained by stan-

dard convex optimization techniques, but the number of decision variables is large.

Alternatively, one can use specialized algorithms such as the nonlinear auction tech-

niques of [Bangla and Castañón, 2013] that exploit the inherent bipartite nature of

the problem.
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Instead, we use a variant of the integer FAB algorithm in Section 4.3.1 to solve the

relaxed problem (4.16)-(4.19). The relaxed FAB algorithm also consists of forward

and backward passes. Instead of solving the integer subproblems IP (t), we now solve

the relaxed subproblems RP (t) in the forward and backward passes of the relaxed

FAB algorithm.

We now show how to solve the relaxed subproblems RP (t). The relaxed sub-

problems RP (t) are to minimize a convex and continuously differentiable objective

function over a convex set formed by linear constraints. We first show how to solve

the single-agent relaxed subproblems, then generalize it to the multi-agent case via

coordinate descent method.

Since there is only one agent, we can assume that it can search all locations. The

single-agent relaxed subproblem is then

minimize
bt

K∑
k=1

qk,0(1− αk)bt,1,k

subject to
K∑
k=1

bt,1,k = N1

bt,1,k ≥ 0, ∀k

The Lagrangian function is

Lt(bt, λ) =
K∑
k=1

qk,0(1− αk)bt,1,k + λ(
K∑
k=1

bt,1,k −N1)

If b∗t is a global minimum, then there exists a scalar λ∗ such that

b∗t ∈ arg min
bt≥0

Lt(bt, λ
∗)

The optimality conditions for an orthant constraint yield

qk,0 ln(1− αk)(1− αk)b
∗
t,1,k + λ∗ ≥ 0, k = 1, . . . , K
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qk,0 ln(1− αk)(1− αk)b
∗
t,1,k + λ∗ = 0, if b∗t,1,k > 0

Thus, the single-agent relaxed subproblem can be solved using a scalar optimiza-

tion technique to find λ∗ and the corresponding b∗t that satisfy the feasibility con-

straints and the optimality conditions.

For multiple agents with limited accessibilities, the relaxed subproblem RP (t) is

minimize
bt

ft(bt) =
∑
x

p(x)
T∏
t=1

(1− αt,xt)
∑M
m=1 bt,m,xt

subject to
∑

k:(m,k)∈A

bt,m,k = Nm, ∀m

bt,m,k ≥ 0, ∀t,∀(m, k) ∈ At

bt,m,k = 0, ∀t,∀(m, k) 6∈ At

The decision variables bt can be divided into M blocks. The m̂-th block bt(m̂) =

{bt,m̂,1, . . . , bt,m̂,K} corresponds to the m̂-th agent. If we fix M − 1 blocks of a feasible

bt and only optimize over its m̂-th block, the relaxed subproblem with respect to the

m̂-th block is

minimize
bt(m̂)

∑
k:(m̂,k)∈A

q̂k,0(1− αk)bt,m̂,k

subject to
∑

k:(m̂,k)∈A

bt,m̂,k = Nm̂

bt,m̂,k ≥ 0, ∀k

where q̂k,0 = qk,0(1−αk)
∑
m 6=m̂:(m,k)∈A bt,m,k are constants. These block-wise subproblems

can be solved as single-agent relaxed subproblems.

By applying the block coordinate descent method, we can then solve the multi-



72

agent sparse relaxed subproblems RP (t) to optimality.

Theorem 4.3.3. The block coordinate descent method finds an optimal solution of

the multi-agent relaxed subproblems RP (t).

Proof. The objective function ft(bt) is continuously differentiable and convex, mini-

mizing over some bt(m̂) at each step in its iterations. The feasible sets of bt(m̂) are

compact and convex for all m̂, as is the feasible set of bt. By Proposition 6 of [Grippo

and Sciandrone, 2000], the limit point of the block coordinate descent method is a

local minimum of ft(bt), which is also a global minimum due to the convexity of

ft(bt). �

In Section 4.5.3, we compare the block coordinate descent method with the con-

strained nonlinear optimization algorithms available in scipy.optimize, a Python

optimization package. Results in Table 4.7 show that our block coordinate descent

method is much faster than the general algorithms.

We next show that the relaxed FAB algorithm finds an optimal solution of the

entire relaxed problem:

Theorem 4.3.4 (Global Optimality of FAB Algorithm for the Relaxed Problem).

The FAB algorithm for continuous search effort converges to a global optimum of the

relaxed problem.

Proof. The FAB algorithm is a block coordinate descent algorithm with a convex,

continuously differentiable objective function f(b), minimizing over some bt at each

step in its iterations. The feasible sets of bt are compact and convex, as is the feasible

set of b. By Proposition 6 of [Grippo and Sciandrone, 2000], the limit point of the

block coordinate descent method is a local minimum of f(b), which is also a global

minimum because f(b) is convex. �

4.3.3 A Two-Stage FAB Algorithm

To solve the integer allocation problem, we propose the use of a two-stage FAB

algorithm. In the first stage, we solve the relaxed problem to optimality, using the

FAB algorithm for continuous search effort. In the second stage, we randomly sample
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a set of initial sensor allocation decisions using the optimal solution for the relaxed

problem as probabilities. This sampling is done multiple times, to generate multiple

integer sensor allocations as starting allocations for the integer FAB algorithm. For

each of these starting allocations, we use the integer FAB algorithm to converge to an

improved integer solution, corresponding to a block-coordinate local minimum. For

the final sensor allocations, we select the local minimum solution with the best value.

Two-Stage FAB Algorithm

Input: {αk, k = 1, . . . , K}, π1, Nrep.

Output: b.

Initialization:

Let qR(1) = π1. Let qL(t) = 1 for all t.

Stage I:

Step 1 (Relaxed Forward Pass) Starting from t = 1 to T − 1:

1. Solve the relaxed subproblem RP (t) in (4.20)–(4.23) to obtain bt.

2. Update qR(t+ 1) = PIt(bt)qR(t).

Step 2 (Relaxed Backward Pass) Starting from t = T to 2:

1. Solve the relaxed subproblem RP (t) in (4.20)–(4.23) to obtain bt.

2. Update qL(t− 1) = P T It(bt)qL(t).

Step 3 (Repeat Relaxed Forward-Backward Passes) Repeat Step 1–2

in Stage I until it converges, i.e., after one cycle of iterations f(b) does not

improve the solution significantly.
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Stage II:

Step 4: Normalize b̄ obtained from Stage I to one. Randomly sample integer-

valued b from a multinomial distribution whose probability mass function is

the normalized b̄ for Nrep times. Compute compute f(b). For each b, compute

qL(t) for all t and let qR(1) = π1, and do Step 5–7.

Step 5 (Integer Forward Pass) Starting from t = 1 to T − 1:

1. Solve the integer subproblem IP (t) in (4.12)–(4.15) to obtain bt.

2. Update qR(t+ 1) = PIt(bt)qR(t).

Step 6 (Integer Backward Pass) Starting from t = T to 2:

1. Solve the integer subproblem IP (t) in (4.12)–(4.15) to obtain bt.

2. Update qL(t− 1) = P T It(bt)qL(t).

Step 7 (Repeat Integer Forward-Backward Passes): Repeat Step 5–6

in Stage II until convergence, i.e., after one cycle of iterations f(b) does not

improve.

Step 8: Return the best one among Nrep solutions.

4.4 Heterogeneous Agent Search

When the homogeneous agent assumption of Section 4.3 is not satisfied, the integer

subproblems are NP-hard, and the FAB algorithm becomes impractical to implement

exactly. Note that the relaxed version of these multi-agent search problems will still
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be convex, and an optimal solution can be obtained efficiently using the fractional

FAB algorithm. However, we no longer have an efficient integer FAB algorithm to

improve the solutions. Instead, we establish that the optimization problem of (4.2) -

(4.5) (restated here):

minimize
b

f(b) =
∑
x

p(x)
T∏
t=1

M∏
m=1

(1− αt,m,xt)bt,m,xt (4.2)

subject to
∑

k:(m,k)∈At

bt,m,k ≤ Nm, ∀t,m (4.3′)

bt,m,k ∈ {0, . . . , Nm}, ∀t, ∀(m, k) ∈ At (4.4)

bt,m,k = 0, ∀t, ∀(m, k) 6∈ At (4.5)

can be reduced to a problem of maximizing a monotone submodular function with

matroid constraints. Note that due to the monotonicity of the objective function, the

inequality constraint (4.3′) is equivalent to the equality constraint (4.3). We present

two greedy algorithms with guaranteed performance for the approximate solution of

this problem and a lower bound of the optimal objective value.

4.4.1 Set Based Formulation

Without loss of generality, we can assume that Nm = 1 for each agent m at any time

period. This is because if Nm > 1, we can create Nm copies of the agent with the same

visibility At at each time t, resulting in an equivalent problem with N =
∑M

m=1 Nm

micro agents, each of which has a budget of one unit of search effort.

Let Et,m = {(t,m, k)|(m, k) ∈ At} be the set of all feasible assignments for each

micro agent m at time t, and let E = ∪Tt=1 ∪Mm=1 Et,m. Note that Et,m ∩ Et′,m′ = ∅
if t 6= t′ or m 6= m′, and {Et,m} is a partition of E . We transform the problem

from minimizing the probability of no detection to maximizing the probability of a

detection, and reformulate it in terms of set variables, as:
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maximize
S

F (S) = −
∑
x

p(x)
T∏
t=1

M∏
m=1

∏
(t,m,xt)∈S

(1− αt,m,xt) (4.24)

subject to |S ∩ Et,m| ≤ 1, ∀t,m (4.25)

S ⊂ E (4.26)

The correspondence between the set-based formulation and (4.2) - (4.5) is as fol-

lows: (t,m, k) ∈ S is equivalent to bt,m,k = 1. The cardinality constraints (4.25)

restrict each agent to search at most one location at each time, which is the inequal-

ity version of (4.3) when Nm = 1. Switching to an inequality constraint is not a

restriction, because the monotonicity property that will be shown subsequently im-

plies that the optimal solution will be satisfied the constraint with equality. A feasible

set S can be interpreted as a feasible assignment of agents to locations for multiple

time periods. It is easy to see that the maximum cardinality of a feasible set is TM ,

and an optimal set has cardinality TM .

Let the collection of feasible sets (known as the independent sets) satisfying (4.25)–

(4.26) be I. We show that the objective function F (S) is increasing and submodular,

and the pair (E , I) is a matroid.

Lemma 4.4.1. The objective function F (S) is increasing and submodular in S.

Proof. Consider two feasible assignments S, S ′ where there exists (t′,m′, k′) ∈ E such

that (t′,m′, k′) 6∈ S and S ′ = S∪{(t′,m′, k′)}. Then, from (4.25) we have S∩Et′,m′ = ∅
and

F (S ′)

=−
∑

x:xt′ 6=k′
p(x)

∏
t,m

∏
(t,m,xt)∈S′

(1− αt,m,xt)

−
∑

x:xt′=k′

p(x)
[ ∏
t6=t′ or m 6=m′

∏
(t,m,xt)∈S′

(1− αt,m,xt)
]
(1− αt′,m′,k′)

>−
∑

x:xt′ 6=k′
p(x)

∏
t,m

∏
(t,m,xt)∈S

(1− αt,m,xt)
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−
∑

x:xt′=k′

p(x)
[ ∏
t6=t′ or m6=m′

∏
(t,m,xt)∈S

(1− αt,m,xt)
]

=F (S)

Thus, F (S) is increasing in S.

Next, consider S ⊂ S ′ and e = (t′,m′, k′) ∈ E such that e 6∈ S ′, we have

F (S ∪ {e})− F (S)

=
∑

x:xt′=k′

p(x)
[ ∏
t6=t′ or m6=m′

∏
(t,m,xt)∈S

(1− αt,m,xt)
]
αt′,m′,k′

>
∑

x:xt′=k′

p(x)
[ ∏
t6=t′ or m6=m′

∏
(t,m,xt)∈S′

(1− αt,m,xt)
]
αt′,m′,k′

=F (S ′ ∪ {e})− F (S ′)

Thus, F (S) has the diminishing return property and is submodular in S [Fisher et al.,

1978]. �

Lemma 4.4.2. The pair (E , I) is a matroid.

Proof. A pair (E , I) where E is a finite set and I is a family of subsets of E is a

matroid if [Welsh, 1976]:

1. ∅ ∈ I.

2. (Hereditary Property) For each S ′ ⊂ S ⊂ E , if S ∈ E then S ′ ∈ E .

3. (Augmentation Property) If S ∈ I, S ′ ∈ I and |S ′| < |S|, then there exists

e ∈ S \ S ′ such that S ′ ∪ {e} ∈ I.

Given a feasible assignment S ∈ I, any S ′ ⊂ S is also a feasible assignment, thus

the hereditary property of independent sets required for a matroid is satisfied.

Furthermore, given two feasible assignments S and S ′ such that |S ′| > |S|. Then,

from (4.25) there must exist e = (t′,m′, k′) ∈ S ′ and (t′,m′, k) 6∈ S for all k, implying

that S ∪{e} is also a feasible assignment. Therefore, the augmentation property of a

matroid is also satisfied. �
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4.4.2 A Greedy Algorithm

We propose a greedy algorithm that exploits the structure of the problem and has

a performance guarantee. It starts with no agent assignments (i.e., S = ∅), assigns

search effort sequentially in time, and within each time, sequentially in agents. Within

each time t, for each agent m, it adds an element e∗ ∈ Et,m to the set S which

maximizes the marginal gain F (S∪{e})−F (S). However, computation of F (S∪{e})−
F (S) would be very inefficient, even for Markov trajectories, as this would require

updating the recursions (4.6)-(4.7) for every time t after each additional assignment.

Therefore, before presenting the greedy algorithm, we first show how to compute

the marginal gain efficiently. Assume that we have assigned agents for the first t− 1

time periods. For time period t, we have assigned the first m − 1 agents. We have

not assigned the rest. Denote the set representation for current agent assignments by

S, and let S correspond to b = [b1, . . . , bT ]. Now we want to assign agent m for time

t. We want to find k∗ such that 1∗ = {t,m, k∗} ∈ Et,m maximizes the marginal gain

F (S ∪{e})−F (S). The marginal gain can be easily represented as shown in Lemma

4.4.3.

Lemma 4.4.3. Let S and b be the current agent assignments. Assume that for some

t and m,

|S ∩ Es,i| =

1, if s < t or s = t, i < m

0, if s = t, i ≥ m or s > t

and equivalently,

K∑
j=1

bs,i,j =

1, if s < t or s = t, i < m

0, if s = t, i ≥ m or s > t
and bs,i,j ∈ {0, 1}, ∀s, i, j

For a given k, let e = {t,m, k} ∈ Et,m. Then

F (S ∪ {e})− F (S) = qR(t)(k)It(bt)(k,k)αt,m,k
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where qR(t)(k) is the k-th element of column vector qR(t) and It(bt)(k,k) is the (k, k)-th

entry of square matrix It(bt) respectively.

Proof. Since

K∑
j=1

bs,i,j =

1, if s < t or s = t, i < m

0, if s = t, i ≥ m or s > t

and 1TP = 1T , we have

F (S) = −f(b)

=− 1T
[ T∏
s=t+1

PIs(bs)
]
PIt(bt)

[ t−1∏
s=1

PIs(bs)
]
π1

=− 1TPIt(bt)
[ t−1∏
s=1

PIs(bs)
]
π1

=− 1T It(bt)qR(bt)

=−
K∑
j=1

qR(bt)(j)

M∏
i=1

(1− αt,i,j)bt,i,j

=−
K∑
j=1

qR(bt)(j)

m−1∏
i=1

(1− αt,i,j)bt,i,j

Assume that adding e = {t,m, k} to S is equivalent to letting bt,m,k = 1 in b to

form bnew. Therefore,

F (S ∪ {e})− F (S) = −f(bnew) + f(b)

=−
∑
j 6=k

qR(bt)(j)

m−1∏
i=1

(1− αt,i,j)bt,i,j

− qR(bt)(k)

[m−1∏
i=1

(1− αt,i,k)bt,i,k
]
(1− αt,m,k)

− (−
K∑
j=1

qR(b̂t)(j)

m−1∏
i=1

(1− αt,i,j)bt,i,j)

=qR(bt)(k)

[m−1∏
i=1

(1− αt,i,k)bt,i,k
]
αt,m,k �
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Now we present the greedy algorithm. It iterates through the time periods. For

each time period, it assigns the agents one by one. The algorithm is as follows:

• Initialization: Let i = 1. Let S0 = ∅ and b = 0. Let qR(1) = π1.

• Main Loop: For t = 1, . . . , T :

– For m = 1, . . . ,M :

∗ Find e∗ = arg maxe∈Et,m
[
F (Si−1 ∪ {e})− F (Si−1)

]
. This is equivalent

to finding

k∗ = arg max
k:(m,k)∈A

qR(t)(k)It(bt)(k,k)αt,m,k

Let Si = Si−1 ∪ {e∗} and bt,m,k∗ = 1.

∗ Update It(bt) by letting It(bt)(k∗,k∗) = It(bt)(k∗,k∗)(1− αt,m,k∗). If m =

M , update qR(t+ 1) = PIt(bt)qR(t).

∗ Increment i = i+ 1.

• Return the greedy solution Sgreedy = STM .

The algorithm produces a solution whose value is at least 1
2

of the optimal value.

In fact, this holds true for any greedy-style algorithm.

Theorem 4.4.4. The value of the solution returned by the greedy algorithm above is

at least 1
2

of the value of the optimal solution S∗.

More generally, consider an arbitrary ordering {Ei, i = 1, . . . , TM} of sets Et,m,

∀t,m. A greedy-style algorithm which starts with S0 = ∅ and adds e∗i ∈ Ei that

maximizes the marginal gain
(
F (Si−1 ∩ {ei}) − F (Si−1)

)
to Si−1 at each iteration i,

i = 1, . . . , TM , can find a greedy solution with value at least 1
2

of the optimal value.

Proof. We prove the general result for any greedy algorithm of the style described in

the theorem. Denote the solution returned by the greedy algorithm by Sgreedy = STM .

Denote the optimal solution be S∗. Let T ∗ = S∗\Sgreedy and denote the elements in
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T ∗ by {e∗1, . . . , e∗|T ∗|}. Let Ti = (S∗ ∩ Ei)\Sgreedy, i = 1, . . . , TM . Since {Ei} is a

partition of E , {Ti} is a partition of T ∗. Then,

F (S∗) ≤F (Sgreedy ∪ S∗)
=F (Sgreedy ∪ T ∗)

=F (Sgreedy) +

|T ∗|∑
j=1

[F (Sgreedy ∪ {e∗1, . . . , e∗j})− F (Sgreedy ∪ {e∗1, . . . , e∗j−1})]

≤F (Sgreedy) +

|T ∗|∑
j=1

[F (Sgreedy ∪ {e∗j})− F (Sgreedy)] (4.27)

=F (Sgreedy) +
∑
e∈T ∗

[F (Sgreedy ∪ {e})− F (Sgreedy)]

=F (Sgreedy) +
TM∑
i=1

∑
e∈Ti

[F (Sgreedy ∪ {e})− F (Sgreedy)]

≤F (Sgreedy) +
TM∑
i=1

∑
e∈S∗∩Ei

[F (Sgreedy ∪ {e})− F (Sgreedy)]

≤F (Sgreedy) +
TM∑
i=1

∑
e∈S∗∩Ei

[F (Si−1 ∪ {e})− F (Si−1)] (4.28)

≤F (Sgreedy) +
TM∑
i=1

[F (Si)− F (Si−1)] (4.29)

=2F (Sgreedy)

Inequalities (4.27) and (4.28) are due to the submodularity of F (S). Inequality

(4.29) holds since the greedy algorithm finds the best element in Ei that augments

the previous set Si−1 and |S∗ ∩ E〈m,j〉| = 1. �

Note that the greedy algorithm above also achieves a 1
2

approximation ratio for

the special case where the probabilities of detection only depend on locations.

4.4.3 Another Greedy Algorithm

We present another greedy algorithm which allocates one agent for all the time pe-

riods, then allocates another agent. The algorithm iterates in opposite directions for
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neighboring agents, and updates the temporary values involved in a forward-backward

manner.

We have the following lemma for computing the marginal gain.

Lemma 4.4.5. Let S and b be the current agent assignments. Assume that for some

t and m,

|S ∩ Es,i| =

1, if i < m or i = m, s < t

0, if i = m, s ≥ t or i > m

and equivalently,

K∑
k=1

bs,i,j =

1, if i < m or i = m, s < t

0, if i = m, s ≥ t or i > m
and bs,i,j ∈ {0, 1}, ∀s,∀i, ∀j

For a given k, let e = {t,m, k} ∈ Et,m. Then

F (S ∪ {e})− F (S) = qL(t)(k)qR(t)(k)It(bt)(k,k)αt,m,k

where qL(t)(k), qR(t)(k), and It(bt)(k,k) are the k-th element of column vector qL(t),

the k-th element of column vector qR(t), and the (k, k)-th entry of square matrix It(bt)

respectively.

Proof. Assume that adding e = {t,m, k} to S is equivalent to letting bt,m,k = 1 in b

to form bnew. Then,

F (S ∪ {e})− F (S) = F (bnew)− F (b)

=−
∑
j 6=k

qL(bt)(j)qR(bt)(j)It(bt)(j,j)

− qL(bt)(k)qR(bt)(k)It(bt)(k,k)(1− αt,m,k)

−
(
−

K∑
j=1

qL(bt)(j)qR(bt)(j)It(bt)(j,j)

)
=qL(bt)(k)qR(bt)(k)It(bt)(k,k)αt,m,k �

The algorithm goes as follows:
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• Initialization: Let i = 0. Let S0 = ∅ and b = 0. Let qR(1) = 1. Let

qL(t) = π1 for all t. Let It(bt) be an identity matrix for all t.

• Main Loop: For m = 1, . . . ,M :

– If m is odd, iterate from t = 1 to t = T . Otherwise, iterate from t = T to

t = 1:

∗ Find e∗ = arg maxe∈Et,m
[
F (Si−1 ∪ {e})− F (Si−1)

]
. This is equivalent

to finding

k∗ = arg max
k:(m,k)∈A

qL(t)(k)qR(t)(k)It(bt)(k,k)αt,m,k

Let Si = Si−1 ∪ {e∗} and bt,m,k∗ = 1.

∗ Update It(bt) by letting It(bt)(k∗,k∗) = It(bt)(k∗,k∗)(1 − αt,m,k∗). If m

is odd and t < T , update qR(t + 1) = PIt(t)qR(t). If m is even and

t > 1, update qL(t− 1) = P ′It(bt)qL(t).

∗ Increment i = i+ 1.

• Return the greedy solution Sgreedy = STM .

By Theorem 4.4.4, the algorithm finds a value that is at least 1
2

of the optimal

value.

4.4.4 Lower Bound of the Optimal Value

Consider the following nonlinear program which is a continuous relaxation of the

heterogeneous agent search program (4.2) - (4.5):

minimize
b

f(b) =
∑
x

p(x)
T∏
t=1

M∏
m=1

(1− αt,m,xt)bt,m,xt (4.30)

subject to
∑

k:(m,k)∈At

bt,m,k = Nm, ∀t,m (4.31)
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bt,m,k ∈ [0, Nm], ∀t,∀(m, k) ∈ At (4.32)

bt,m,k = 0, ∀t, ∀(m, k) 6∈ At (4.33)

It is easy to see that the optimal solution of the realxed problem (4.30)–(4.33) is

a lower bound of the optimal solution of the integer nonlinear problem (4.2)–(4.5).

The objective function f(b) in (4.30) is a continuously differentiable convex function,

which can be shown by replacing the probabilies of detection αt,k with αt,m,k in the

proof of Lemma 4.4.1.

The relaxed FAB algorithm developed in Section 4.3.2 finds an optimal solution

of the relaxed heterogeneous agent search problem (4.30)–(4.33). This is because the

relaxed FAB algorithm is a block coordinate descent algorithm with a continuously

differentiable convex objective function f(b), minimizing over some bt at each itera-

tion. The feasible sets of bt are compact and convex, as is the feasible set of b. By

Proposition 6 of [Grippo and Sciandrone, 2000] and the convexity of f(b), the limit

point of the relaxed FAB algorithm is a global minimum.

4.5 Experiments

4.5.1 Experiments for Homogeneous Agent Search

In this section, we do experiments to demonstrate the performance of our two-stage

FAB algorithm for the problem of sparse search of Markovian moving object using

multiple agents with location-dependent probabilities of detection. All experiments

are conducted using Python 3 on a laptop computer with Intel i7-4600M processor

and 8GB RAM.

First, we show that our algorithm finds solutions that are close to the best po-

tential solution. We perform the same experiments on Algorithm 2 in [Royset and

Sato, 2010], referred to as the RS algorithm. The RS algorithm is an exact algorithm
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based on the cutting plane method. We use the Gurobi v7.5 Python package to solve

the mixed-integer linear problems generated in the algorithm.

The RS algorithm computes a lower bound flo, which is the best potential objective

value. It should be emphasized that this lower bound may not be achieved by any

feasible solution. Denote the objective value found by our algorithm by four. The

relative optimality gap is computed as δ = four−flo
flo

. The performance of our algorithm

can therefore be evaluated by the relative optimality gap. The RS algorithm also

maintains an upper bound fhi, which is the best objective value achieved by it so far.

The RS algorithm starts with no agent assignments for all time periods, i.e.,

b = 0. Our experiments show that the RS algorithm converges much slower than

our algorithm and the lower bound stays at 0 even after many iterations. To make

it converge faster, we initialize the RS algorithm with cuts computed using the Nrep

solutions obtained from our two-stage FAB algorithm. Thus, the RS algorithm is

guaranteed to obtain a search plan that is at least as good as the one obtained by

our algorithm.

We randomly generate 5 models for 3 search agents, 225 locations, and 10 time

periods. For each agent m and each location k, we let the probability of (m, k) ∈ A
be 0.6 (unless otherwise specified, the probability of generating arcs is also 0.6 for

the models hereafter). We also made sure that each agent can access at least one

location and each location is accessible to at least one agent. For each model, we

sample Nrep = 20 initial starting points for stage II in our algorithm. We run the

RS algorithm for 900 seconds to obtain the lower bounds and compute the relative

optimality gaps of our solutions.

The results are shown in Table 4.1. For all models, our algorithm has found

solutions of relative optimality gap within 5% in no more than 8 seconds. Besides,

the solutions found by our algorithm were not improved by the RS algorithm.
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Table 4.1: Relative optimality gaps and run times by our algorithm.
The models have 3 agents, 225 locations and 10 time periods. Number
of random initial points for stage II in our algorithm is Nrep = 20. The
RS algorithm is initialized with our solution instead of b = 0. Lower
bounds flo are obtained by running the RS algorithm for 900 seconds.
Relative optimality gaps are computed as δ = four−flo

flo
.

Model
No.

Our value
four

RS lower
bound flo

Relative
opt. gap δ

Our run
time

RS upper
bound fhi

1 0.8564 0.8181 4.69% 6.35s 0.8564
2 0.8588 0.8186 4.91% 6.60s 0.8588
3 0.8585 0.8224 4.40% 7.15s 0.8585
4 0.8613 0.8236 4.57% 6.60s 0.8613
5 0.8598 0.8211 4.71% 6.93s 0.8598

Second, we compare four variants of our two-stage FAB algorithm. The 1st vari-

ant, one-stage direct, has only stage II and is initialized with b = 0. It is equivalent to

the algorithm presented in Section 4.3.1. The 2nd variant, two-stage direct, has both

stages, and stage II uses the fractional point found by stage I as the initial point.

The 3rd variant, one-stage randomized, has only stage II. The initial points for stage

II are randomly sampled from a uniform distribution. The last variant, two-stage

randomized, is our two-stage FAB algorithm presented in Section 4.3.2. In addition,

we compare with the greedy myopic algorithm. It starts with no agent assignments.

Then from time period 1 to T , it chooses the agent assignment for that time period

that minimizes the objective value. The myopic algorithm is in fact equivalent to one

sweep of the forward recursion in the one-stage direct FAB algorithm and therefore

is guaranteed to find a worse solution than the one-stage direct FAB algorithm.

We randomly generate 5 models for 10 search agents, 100 locations, and 15 time

periods. In the two randomized variants, we randomly generate 20 initial points for

stage II. The results are shown in Table 4.2. For all the models, the two-stage FAB

algorithm in Section 4.3.2 finds better objective values than its other three variants

and the myopic algorithm.

Next, we study how our two-stage FAB algorithm scales with problem size. We
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Table 4.2: Comparison of four variants of our algorithm and the my-
opic algorithm. The models have 10 agents, 100 locations and 15 time
periods. Number of random initial points for stage II in the randomized
variants is Nrep = 20. The asterisk (∗) indicates the best value found.

Model No. Myopic One-stage
direct

One-stage
randomized

Two-stage
direct

Two-stage
randomized

1 0.17740 0.17732 0.17728 0.17731 0.17727∗

2 0.18678 0.18646 0.18648 0.18644 0.18643∗

3 0.19541 0.19496 0.19491 0.19492 0.19490∗

4 0.19576 0.19547 0.19540 0.19541 0.19537∗

5 0.19643 0.19546 0.19540 0.19539 0.19538∗

run our two-stage FAB algorithm with Nrep = 20 random initial points. We also run

the RS algorithm to obtain lower bounds and relative optimality gaps. As before, we

initialize the RS algorithm with cuts computed using our solutions and run it for 900

seconds.

We do three experiments. The first experiment fixes the number of agents to be

10 and the number of locations to be 100, and generates 5 models by varying the

time horizon from 5 to 25. The results are in Table 4.3. The second experiment fixes

the number of locations to be 100 and the time horizon to be 10, and generates 5

models by varying the number of agents from 4 to 20. The results are in Table 4.4.

The third experiment fixes the number of locations to be 100 and the time horizon

to be 10, and generates 5 models by varying the number of agents from 4 to 20. The

results are in Table 4.5.

The results show that our algorithm scales well with respect to different problem

sizes. We observe that the run time for different numbers of locations and fixed

number of agents and time horizon is approximately constant, and the run time

increases approximately linearly as time horizon or number of agents grows. Besides,

our algorithm has found solutions that could not be further improved by the RS

algorithm.
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Table 4.3: Objective values and run times by our two-stage FAB
algorithm for different time horizons. The model has 10 agents and
100 locations. Time horizon ranges from 5 to 25. The RS algorithm is
initialized with Nrep cuts computed using the solutions obtained from
the Nrep repetitions of stage II of our algorithm. Lower bounds are
obtained by running the RS algorithm for 900 seconds. Nrep = 20.

Time
horizon

Our value
four

RS lower
bound flo

Relative
opt. gap δ

Our run
time

RS upper
bound fhi

5 0.5349 0.4351 22.94% 1.45s 0.5349
10 0.3079 0.0601 412.31% 3.60s 0.3079
15 0.1773 0 N/A 6.22s 0.1773
20 0.1021 0 N/A 8.89s 0.1021
25 0.0588 0 N/A 10.09s 0.0588

Table 4.4: Objective values and run times by our two-stage FAB
algorithm for different numbers of agents. The model has 100 locations
and 10 time periods. Number of agents ranges from 4 to 20. The RS
algorithm is initialized with Nrep cuts computed using the solutions
obtained from the Nrep repetitions of stage II of our algorithm. Lower
bounds are obtained by running the RS algorithm for 900 seconds.
Nrep = 20.

Number
of agents

Our value
four

RS lower
bound flo

Relative
opt. gap δ

Our run
time

RS upper
bound fhi

4 0.6184 0.5216 18.6% 0.60s 0.6184
8 0.3878 0.1826 112.38% 1.53s 0.3878
12 0.2439 0.0128 1805.47% 4.65s 0.2439
16 0.1515 0 N/A 8.31s 0.1515
20 0.0932 0 N/A 11.60s 0.0932

4.5.2 Experiments for Heterogeneous Agent Search

In this section, we compare different algorithms for the heterogeneous agent search

problem (4.2) - (4.5). We generate 5 models to compare the algorithms. Each model

has 20 agents, 400 locations and 20 time periods.

We refer to the greedy algorithm in Section 4.4.2 as the G1 direct algorithm, and

the greedy algorithm in Section 4.4.3 as the G2 direct algorithm. We refer to the

randomized version of G1 direct (and G2 direct) as G1 random (and G2 random).

The randomized algorithms randomly initialize a set of qR(b1), run the main loop to

obtain a greedy solution for each qR(b1), then keep the best solution. For the G1/G2
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Table 4.5: Objective values and run times by our two-stage FAB
algorithm for different numbers of locations. The model has 10 agents
and 10 time periods. Number of locations ranges from 64 to 361. The
RS algorithm is initialized with Nrep cuts computed using the solutions
obtained from the Nrep repetitions of stage II of our algorithm. Lower
bounds are obtained by running the RS algorithm for 900 seconds.
Nrep = 20.

Number
of locations

Our value
four

RS lower
bound flo

Relative
opt. gap δ

Our run
time

RS upper
bound fhi

64 0.1541 0 N/A 1.50s 0.1541
100 0.3709 0.0601 412.31% 3.60s 0.3079
169 0.5113 0.3733 36.97% 4.12s 0.5113
225 0.6016 0.5094 18.10% 4.21s 0.5094
361 0.7388 0.6929 6.62% 4.51s 0.7388

random algorithms, let the number of initial qR(b1) be 20.

We also compare with the RS algorithm (it is initialized with b = 0 and runs for

900 seconds) and a purely random approach, which randomly generates 1000 feasible

agent assignments b and picks the best value. In addition, we compute the lower

bounds on the optimal objective values by solving the relaxed heterogeneous agent

search problem (4.30)–(4.33).

The results are in Table 4.6. The values are the final probability of not detecting

the objects. All four greedy algorithms have found solutions better than the RS

algorithm and the purely random approach. The G2 random algorithm, which assigns

one agent for all the time periods followed by assigning another agent for all the time

periods, wins all 5 cases. Between the direct and random variants, the random ones

have found better solutions.

4.5.3 Experiments for Relaxed Subproblems

We compare our algorithm presented in Appendix B for solving the relaxed subprob-

lem with the SLSQP algorithm provided in scipy.optimize, a Python optimization

package. The SLSQP algorithm in scipy.optimize, which was originally imple-
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Table 4.6: Comparison of objective values by different algorithms for
sparse search with multiple heterogeneous agents. The models have 20
agents, 400 locations and 20 time periods. Number of random initial
qR(b1) for G1/G2 random is 20. The RS algorithm is initialized with
b = 0 and runs for 900 seconds. The purely random approach chooses
the best among 1000 random solutions. The asterisk (∗) indicates the
best value found.

Model
No.

G1
direct

G1
random

G2
direct

G2
random RS Purely

random
Lower
bound

1 0.3312 0.3302 0.3314 0.3292∗ 0.3529 0.4562 0.1820
2 0.3298 0.3324 0.3298 0.3286∗ 0.3559 0.4568 0.1842
3 0.3291 0.3291 0.3292 0.3275∗ 0.3546 0.4567 0.1826
4 0.3319 0.3310 0.3318 0.3292∗ 0.3525 0.4575 0.1788
5 0.3319 0.3310 0.3320 0.3298∗ 0.3519 0.4539 0.1808

mented by Kraft [Kraft, 1988], is a sequential quadratic programming algorithm.

We generate 5 models. Each model has 10 agents and 100 locations. The run

times of two algorithms are given in Table 4.7. It can be seen that our specialized

algorithm is two orders of magnitude faster than the SLSQP algorithm for general

constrained nonlinear optimization problem.

Table 4.7: Compasion of run times by our algorithm and the SLSQP
algorithm in Python scipy.optimize package for solving the relaxed
subproblems. The models have 10 agents and 100 locations.

Model
No.

Our Algorithm
Run Time

scipy.optimize SLSQP
Run Time

1 0.15s 24.47s
2 0.22s 20.43s
3 0.18s 31.57s
4 0.17s 22.47s
5 0.23s 21.62s
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Chapter 5

Multi-Object Graph Search with Motion

and Switching Cost Constraints

In this chapter, we develop a different class of fast algorithms for the problem of

multi-object graph search with motion and switching cost constraints, which is for-

mulated as a single orienteering problem (SOP) or a team orienteering problem (TOP)

depending on the number of search agents, based on a decomposition of the orienteer-

ing problem into a knapsack problem (assignment of locations with rewards to agents

with limited switching cost budgets) and a subsequent traveling salesperson problem

(selection of most efficient route for assigned locations). Fast knapsack algorithms

are based on selecting locations in terms of their marginal reward per additional re-

source cost. For orienteering problems, the resource cost is hard to evaluate because

it requires the solution of the subsequent traveling salesperson problem. We develop

a novel approach based on spanning trees which allow for estimation of increased re-

source costs, leading to a fast algorithm for selecting locations to be searched by each

agent. We subsequently determine paths for the selected locations using fast approx-

imations for the traveling salesperson problem, such as the Lin-Kernighan-Helsgaun

algorithm [Helsgaun, 2000]. The resulting tours for each agent can be refined further

by exploring additional local search techniques.

The chapter is organized as follows: Section 5.1 describes our algorithm for the

single orienteering problem. Section 5.2 describes our algorithm for the team orien-

teering problem. Section 5.3 contains experimental results comparing our algorithms
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with available algorithms in the literature.

5.1 The Single Orienteering Problem (SOP)

We first discuss the problem for a single agent. We model the location of poten-

tial objects of interest in terms of an undirected graph G = (V,E), where V =

{v1, v2, . . . , vN} is the node set and E = {(vi, vj) : 1 ≤ i < j ≤ N} is the edge

set. Each node represents a location with a potential object of interest, and edges

represent potential paths between locations. Assume that (vi, vj) ∈ E if and only if

(vj, vi) ∈ E. Let v1 denote the home node where the tour starts and ends.

Each node vk has a positive reward rk that can be collected by having the agent

visit the node. We assume that the reward at a node can be collected only once. Each

edge (vi, vj) has an edge cost cij, which represents the amount of resource required to

traverse the edge. Assume that cij = cji. We assume that the edge costs satisfy the

triangle inequality: cik + ckj ≥ cij for all distinct i, j, k. For many of the applications

we are interested in, the cost of an edge is the Euclidean distance between its two

nodes.

Let B denote the budget, in units of cost as above. The goal of the orienteering

problem [Golden et al., 1987,Vansteenwegen et al., 2011] is to design a closed path, or

a tour, to visit a subset of nodes that maximizes the total reward collected, without

exceeding the budget constraint. This problem has ingredients of both the traveling

salesperson problem (TSP) and the knapsack problem and is NP-Hard. A node subset

that will be visited must be selected; one would like to select a subset with as high

reward as possible, while respecting budget constraints. Evaluating the required

budget for a given node subset requires solution of a traveling salesperson problem.

This coupling makes it difficult to use fast approximate algorithms for either knapsack

problems or TSP problems.
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The above problem can be formulated as an integer programming problem [Tsili-

girides, 1984]. Define binary variables βk ∈ {0, 1} (k = 2, . . . , N) to be 1 if node

vk is visited and 0 otherwise. Define binary variables eij ∈ {0, 1} (1 ≤ i < j ≤ N)

to be 1 if edge (vi, vj) is travelled and 0 otherwise. To handle the case where the

solution contains only one edge – from v1 to some vj, e1j is also allowed to take value

2 in addition to 0 and 1. Then we have the following integer linear programming

formulation:

maximize
{βk}

N∑
k=2

rkβk

subject to
N∑
j=2

e1j = 2;
N−1∑
i=1

N∑
j=i+1

cijeij ≤ B

k−1∑
i=1

eik +
N∑

j=k+1

ekj = 2βk, k = 2, . . . , N

2
∑
vk∈S

βk ≤ |S|
( ∑
vi∈S,vj 6∈S

eij +
∑

vi 6∈S,vj∈S

eij

)
S ⊂ V \ {v1}, |S| ≥ 2 (5.1)

e1j ∈ {0, 1, 2}, j = 2, . . . , N

eij ∈ {0, 1}, 2 ≤ i < j ≤ N

βk ∈ {0, 1}, k = 2, . . . , N

The above formulation modifies the standard TSP by introducing the node selec-

tion variables βk and the budget constraint. In addition, the objective function is

to maximize the total reward of the nodes being visited. The above formulation has

an exponential number of subtour elimination constraints (5.1), limiting the appli-

cability of direct integer programming approaches. Next, we describe our proposed

alternative approximate algorithms for obtaining fast solutions to the above problem.

The optimization procedure of the orienteering problem involves selecting a node
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subset. In order to efficiently utilize the budget, the ideal way is to travel along an

optimal TSP tour in the induced subgraph of the selected node subset.

Given a subset of nodes S ⊂ V that includes the origin v1, we want to estimate

the resource cost to visit those nodes. A modern technique for finding an approximate

TSP tour is the Lin-Kernighan-Helsgaun (LKH) algorithm [Helsgaun, 2000], which

we use to estimate the resource cost. Let cLKH(S) denote the cost of the Hamiltonian

tour on S found by the LKH algorithm.

Our algorithm exploits the following facts from graph optimization problems:

Given any spanning tree T on S, the cost of an optimal tour on S is no greater

than twice the cost of the edges of the tree, ctree(T ). Thus, 2 · ctree(T ) provides an

estimate of the resource cost without requiring a tour solution. Furthermore, the

tree provides a topological order on the nodes in the tree induced by a depth-first

traversal. The cost of the Hamiltonian tour traversing those nodes in topological

order is a better estimate of the resource cost, ctree−tour(T ). Better estimates of tour

length are available, but these require solution of optimization problems that are

time-consuming.

Our algorithm consists of three major steps and a refinement step, which will be

explained next.

Algorithm for the Single Orienteering Problem

Step 1 (Tree Growing)

Starting from node v1, we grow a tree using a greedy knapsack approach. Suppose

the current tree T spans node subset S where v1 ∈ S and has tour cost c(T ) (as

estimated by the weight 2 · ctree(S)). For each unselected node vk 6∈ S, compute the
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minimum cost to connect this node as a new leaf to tree T , denoted ck, as follows:

ck = min
vj∈T

cjk (5.2)

Denote by j∗ the index of the closest node to vk in T . The question is whether

connecting vk as a new leaf in T results in a shorter tree than inserting vk as the

parent node to j∗, denoted as par(j∗). This is easily answered by considering whether

cpar(j∗)j∗ > cpar(j∗)k. If so, it is best to insert node vk as the parent of node vj∗. The

incremental increase in tree length is

sk = min{ck, ck + cpar(j∗)k − cpar(j∗)j∗} (5.3)

Define the Reward-to-Connection-Cost Ratio

RCCR(k, T ) =
rk
sk

(5.4)

Select the node vk with the biggest RCCR among the nodes such that c(T∪{vk}) ≤ B

and add it to tree T as computed previously. This continues until none of remaining

nodes outside of S satisfies c(T ∪ {vk}) ≤ B.

Step 2 (Tree Improvement):

Denote the cost of a tour using the topological order imposed from a depth-first

traversal of the tree as ctree−tour(T ). ctree−tour(T ) is generally smaller than 2 · ctree(T ),

and thus is a better estimate of the resource cost.

Select node vk with the biggest RCCR computed as in (5.4) among the nodes such

that ctree−tour(T ∪ {vk}) ≤ B and add it to the tree. This continues until none of

remaining nodes outside of S satisfies ctree−tour(T ∪ {vk}) ≤ B.

Step 3 (Tour Construction)

The resulting tree from the first two stage identifies a set of nodes S with locations

that should be searched. To find the shortest route to visit and search these locations,
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we run the LKH algorithm on the selected node subset S to find a tour, denoted by

IS, with cost cLKH(S).

Step 4 (Tour Improvement)

The tour IS constructed by the LKH algorithm in the last step may not exhaust

the budget, so its cost c(IS) < B. If so, we may be able to insert some of the remaining

nodes into the tour. For each node vk 6∈ S, define its incremental cost given lS as

dk(IS) = min(vi,vj)∈IS cik + cjk− cij. If c(IS) + dk(IS) ≤ B, then node vk is feasible for

adding to the tour IS. Find the feasible node vk with highest Reward-to-Incremental-

Cost Ratio (RICR), rk
dk(IS)

and insert it in the tour Is at the location with minimal

incremental cost. Repeat incrementally until no more nodes can be added in this way

with the given budget.

Step 5 (Tour Refinement — Optional)

After more nodes are inserted into the tour, the tour we currently have may not

be an optimal TSP tour on this enlarged node subset. In this case, we find a new tour

using the LKH algorithm on the current node subset and repeat the tour improvement

step until no further improvements can be made. This step is not needed in most

cases, but it is a simple step.

5.2 The Team Orienteering Problem (TOP)

The above algorithm can be extended to problem with multiple agents that work as

a team. For M (M ≥ 2) agents, M tours are planned that search disjoint sets of

locations. For simplicity, we assume that the same reward will be collected if the

same location is searched by any agent, and all agents have the same budget B. We

also assume that all agents start from a common base location, at node v1. The goal
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of the team orienteering problem [Chao et al., 1996b, Vansteenwegen et al., 2011] is

to plan M tours, all starting and ending at v1, to collect maximal reward without

exceeding the budget limit of any agent.

An integer programming formulation of the team orienteering problem is as fol-

lows. Define binary variables βkm ∈ {0, 1} (k = 2, . . . , N , m = 1, . . . ,M) to be 1 if

node vk is visited by tour m and 0 otherwise. Define binary variables eijm ∈ {0, 1}
(1 ≤ i < j ≤ N , m = 1, . . . ,M) to be 1 if edge (vi, vj) is in tour m and 0 otherwise.

Since tour m may visit only one node other than v1, e1jm is also allowed to take value

2 in addition to 0 and 1. Then we have the following integer linear programming

formulation:

maximize
{βkm}

M∑
m=1

N∑
k=2

rkβkm

subject to
M∑
m=1

βkm ≤ 1, k = 2, . . . , N (5.5)

N∑
j=2

e1jm = 2;
N−1∑
i=1

N∑
j=i+1

cijeijm ≤ B, ∀m

k−1∑
i=1

eikm +
N∑

j=k+1

ekjm = 2βkm, k = 2, . . . , N, ∀m

2
∑
vk∈S

βkm ≤ |S|
( ∑
vi∈S,vj 6∈S

eijm +
∑

vi 6∈S,vj∈S

eijm

)
S ⊂ V \ {v1}, |S| ≥ 2, ∀m

e1jm ∈ {0, 1, 2}, j = 2, . . . , N, ∀m

eijm ∈ {0, 1}, 2 ≤ i < j ≤ N, ∀m

βkm ∈ {0, 1}, k = 2, . . . , N, ∀m

Compared to the previous integer programming formulation for the single tour

case, a new set of constraints (5.5) is imposed so that each node is only visited
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once across tours. The objective function becomes the total reward collected by all

tours, and the rest of the constraints in the orienteering problem formulation are now

extended to M tours. As before, instead of trying to solve the integer linear program-

ming problem, we propose an approximate algorithm based on knapsack heuristics

to effectively find solutions. This algorithm generalizes the approach described in the

previous section to multiple agents.

For simplicity of exposition, we limit our description to the case where M = 3

agents. The approach generalizes readily to other number of agents.

Algorithm for the Team Orienteering Problem

Step 1 (Initialization)

One of the hardest parts of our algorithm is initialization, as we must initialize

simultaneously M = 3 tours. To do so, we restrict our attention to all locations that

are within round-trip distance of the source node v1. Partition the domain circularly

into 12 equal-angle sectors centered at v1. For each sector, compute the total reward

of locations present in that sector. Determine the 3 sectors with the highest rewards,

and select the node nearest to v1 in each of the 3 sectors to connect to v1 and be

part of the tour for each agent. The goal is to start the trees with some geographic

diversity, with anticipation of directions where the higher value locations exist.

Step 2 (Tree Growing)

Denote each of the M = 3 trees rooted at v1 as T1, T2, T3, and let Si be the node

subset spanned by Ti. Denote the cost of the edges in tree Tm by ctree(Tm). For

each node vk 6∈ S1 ∪ S2 ∪ S3, compute the incremental distance to insert in tree Tm,

denoted as smk using (5.2), (5.3). We now compute the Reward-to-Connection-Cost

Ratio (RCCR) of vk with respect to each tree Tm as before, as in (5.4):
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RCCR(k, Tm) =
rk
smk

Determine the biggest RCCR(k∗, Tm∗) satisfying ctree(Tm∗∪{vk∗}) ≤ B
2

, and insert

vk∗ into tree Tm∗ with minimal insertion cost. Update the values RCCR(k, Tm) and

continue inserting the largest RCCRs until no more insertions into any of the trees

are feasible.

Step 3 (Tree Improvement)

We refine the estimated cost of a tour for each tree by using the topological order

imposed from a depth-first traversal of the tree. Let ctree−tour(Tm ∪ {vk}) denote the

resource cost of the topological tour of tree Tm after adding vk to it. Add node vk 6∈ S
to its best Tm in order of biggest RCCR as long as ctree−tour(Tm ∪ {k}) ≤ B.

Step 4 (Tour Construction)

Given the trees Tm, we run the LKH algorithm on the nodes Sm in each tree Tm

to obtain tours ISm . If the cost of a tour exceeds B, delete the last node added to the

corresponding tree and rerun the LKH algorithm until feasible tours ISm are found.

Step 5 (Tour Improvement)

Compute the Reward-to-Incremental Cost Ratio (RICR) of each unselected node

with respect to the three tours, and insert node in order of biggest RICR as long as

the cost of the tour meets the budget constraint.

Step 6 (Tour Refinement — Optional)

Find new tours for each agent using the LKH algorithm on the current node

subsets and repeat the tour improvement step until no further improvements can be

made.
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5.3 Experiments

Now we present some numerical results to demonstrate the effectiveness of our new

orienteering algorithms. All experiments are conducted in MATLAB 2014 on a laptop

computer with Intel i7-4600M processor and 8GB RAM.

5.3.1 Experiments for SOP

In this section, we test our SOP algorithm on the data used in [Ding et al., 2016]. The

data in [Ding et al., 2016] was generated using the Statlog LANDSAT dataset from

the UCI Machine Learning Repository [Frank and Asuncion, 2010]. This LANDSAT

dataset has 4435 training examples. Each example is an image of very low-resolution

(3× 3) representing one of six object types, such as cotton crop, red soil, etc. It has

a tag indicating which object type it belongs to.

We are interested in confirming the presence of cotton crops in an area. We have

10 test areas to look for cotton crops. Each area has 100 potential locations, for

which low resolution LANDSAT imagery is available, and contains between 3 and 5

locations with cotton crops. Using a binary classifier as in [Wang et al., 2014], we

estimate the probability that each location in each area contains a cotton crop using

the LANDSAT data, and assign a reward for visiting and searching that location,

consisting of the entropy of the Bernoulli distribution with that probability. For each

of the 10 areas, the goal for the agent is to visit locations in the area collect as much

reward as possible given limits on total distance traveled in its tour.

We compare our algorithm (hereinafter referred to as “New”) with a greedy base-

line approach (referred to as “Bsl”): We grow the tour incrementally by growing a

path from the home node, and adding nodes not already in the path using an algo-

rithm similar to the tour improvement step: We compute the reward per incremental

cost of connecting to the most recently added node for nodes not already in the path,



101

	

0.00	

5.00	

10.00	

15.00	

20.00	

25.00	

30.00	

35.00	

40.00	

45.00	

40	 60	 80	 100	 120	 140	 160	 180	 200	

Av
er
ag
e	
to
ta
l	r
ew

ar
d	

Budget	

New	
Bsl	
Tsi	
GLV	
CGW	
2pi	

Figure 5·1: Average reward collected over 10 areas for different algo-
rithms and budgets.

and choose to extend the path by selecting the node with highest marginal reward

among those nodes that can be added while leaving enough budget to return to the

home node. This construction maintains a path. If the given budget does not allow

us to visit one more node before returning to the original node, then finish and use

this as the final tour. In addition, we compare our algorithm with the algorithms pro-

posed by Tsiligirides in [Tsiligirides, 1984] (referred to as “Tsi”), Golden-Levy-Vohra

in [Golden et al., 1987] (referred to as “GLV”), Chao-Golden-Wasil in [Chao et al.,

1996b] (referred to as “CGW”), and Silberholz-Golden in [Silberholz and Golden,

2010] (named “2-Parameter Iterative” algorithm; referred to as “2pi” here).

To evaluate tours, we use 3 criteria: average reward achieved across the 10 areas,

average computation time, and average remaining travel time budget for the agent.

We use the ten areas with 100 locations discussed previously, where the average total

reward present in those areas is 61.37. We vary the budget for the agent ranging
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from 40 to 200 distance units. Fig. 5·1 shows the average rewards collected by the

different algorithms. Table 5.1 describes the computation time as well as the average

unused budget by each algorithm. Note that 40 units of budget is a tight budget

where the agent can collect only a small fraction of the total reward available, and

200 is a budget that allows the agent to collect over half of the total reward available.

The results in Fig. 5·1 and Table 5.1 show that, in terms of reward collected, our

algorithm is better than the baseline algorithm, the Golden-Levy-Vohra algorithm,

the Chao-Golden-Wasil algorithm and the 2-Parameter Iterative algorithm univer-

sally, and also outperforms the Tsiligirides algorithm once enough budget is avail-

able. Note that our algorithm is between 23 and 70 times faster than the Tsiligirides

algorithm, and has more unused budget, which implies more robustness against unex-

pected resource consumptions. Furthermore, the results indicate that the computa-

tion time of our algorithm grows linearly with the budget, and remains efficient even

in a MATLAB implementation. In contrast, the computation algorithm of Golden-

Levy-Vohra algorithm explodes nonlinearly as the number of locations increases. The

2-Parameter Iterative algorithm has excessive computation requirements, failing to

complete the search for a tour when the budget increased to 200. The Chao-Golden-

Wasil algorithm had reasonable computation times, but it achieved under 75% of the

total reward that our algorithm collected with comparable budgets. Surprisingly, the

second best performing algorithm was our baseline greedy algorithm, which used only

the tour improvement step. The algorithm was fastest among all the algorithms con-

sidered, and achieved over 92% of the value that our algorithm collected for different

budgets.

5.3.2 Experiments for TOP

In this section, we present experiments of our algorithm for TOP. We first test our

algorithm on the same benchmark instances that were used in prior algorithm evalu-
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ations [Chao et al., 1996b], which are now available online [Chao et al., 1996c]. We

assume that there are 3 agents, so M = 3, and our algorithm will develop solutions

with three tours. There are four datasets (p4.3, p5.3, p6.3 and p7.3) available for

three-tour team orienteering problem. Each dataset contains a fixed physical layout

of the nodes, but changes the available budget for the agents over nearly 20 levels.

Dataset p4.3 has 100 nodes, with budget levels per agent from 25 to 80 units. Dataset

p5.3 has 66 nodes, with budgets ranging from 1.7 to 43.3 units per agent. Dataset

p6.3 has 64 nodes, with budget levels from 5 to 26.7 units per agent. Dataset p7.3

has 102 nodes, with budgets from 6.7 to 133 units per agent.

We compare our results with the algorithm of Chao-Golden-Wasil described in

[Chao et al., 1996b], which was originally proposed for the path team orienteering

problem. For each dataset, Figure 5·2 plots the reward that our algorithm obtains as

a function of the agent budget, and compares it with the reward obtained by the Chao-

Golden-Wasil TOP algorithm (referred to as “CGW-T”). The most important feature

of these results is the steady monotone increase in performance of our algorithm as

budgets increase. In contrast, the performance of the CGW-T algorithm is somewhat

erratic, with significant deviations from monotonicity. These deviations are most

pronounced in the larger scenarios (p4.3 and p7.3). An example of the three tours

found by our algorithm is shown in Fig. 5·3, for dataset 4.3 with budget 76.7.

To provide a more quantitative comparison, we computed the average team reward

(Avg. Team Rwd.) and the average computation time (Time) across the different

budget levels in each dataset, and summarize the results in Table 5.2. As the table

illustrates, both algorithms have comparable average computation times. However,

our algorithm achieves higher average rewards in 3 out of the 4 data sets. The

performance difference in dataset 5 is due to a tour improvement heuristic in the

CGW-T algorithm that swaps nodes among tours. We chose to leave that step out of
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Figure 5·2: Comparisons of our new algorithm with the modified
Chao-Golden-Wasil (CGW) algorithm for the orienteering on different
datasets.

our algorithm, in the expectation that starting from a better set of node assignments

to the individual agents would provide sufficient performance using our simpler tour

improvement approach.

As a second set of experiments, we compared both algorithms on the ten LAND-

SAT scenarios discussed in Section 5.3.1, where we varied the budget per agent from

20 units to 120 units. The results are shown in Table 5.3. As the results illustrate, our

algorithm collects more reward on average, and has more resources in reserve, than

the CGW-T algorithm. Furthermore, the computation time of our algorithm grows

linearly with the amount of resources, whereas the computation time of the CGW-T
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Figure 5·3: An example of the tour found by the new algorithm, for
dataset 4.3 with budget 76.7.

algorithm grows nonlinearly, becoming significantly slower than our algorithm for the

resource level of 120 units per agent.
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Budget 40 80 120 160 200

Time (seconds)

New 5.24 7.12 10.27 12.03 16.41
Bsl 0.05 0.10 0.14 0.18 0.24
Tsi 201.9 426.1 625.4 800.2 990.7

GLV 0.11 0.29 10.50 16.02 135.0
CGW 11.26 21.39 24.64 28.11 33.26

2pi 2239 3941 12606 48951 N/A

Bgt. Lft.

New 1.415 1.532 1.148 1.372 1.045
Bsl 1.233 1.160 1.760 1.859 1.200
Tsi 0.407 0.478 0.603 0.787 1.063

GLV 1.602 0.783 1.258 0.976 1.550
CGW 1.022 0.711 0.526 1.443 0.981

2pi 1.130 0.570 0.250 0.560 N/A

Table 5.1: Average computation time (Time) and average unused
budget (Bgt. Lft.) over ten areas for different algorithms.

Dataset 4.3 5.3 6.3 7.3

Avg. Team Rwd. New-T 629.6 640.2 412.7 488.1
CGW-T 594.3 677.0 336.9 467.3

Time (seconds) New-T 3.13 2.20 0.95 1.83
CGW-T 2.33 0.79 0.32 1.48

Table 5.2: Average team reward (Avg. Team Rwd.) and average
computation time (Time) for our new algorithm and the modified CGW
algorithm.

Individual budget 20 40 80 120

Avg. Team Rwd. New-T 9.47 20.06 31.73 42.35
CGW-T 8.60 13.63 21.19 35.25

Time (seconds) New-T 9.40 11.41 13.37 15.92
CGW-T 1.54 5.78 15.40 21.80

Idv. Bgt. Lft. New-T 1.999 2.732 4.734 7.235
CGW-T 0.930 1.213 0.818 0.710

Table 5.3: Average team reward (Avg. Team Rwd.), average compu-
tation time (Time) and average unused individual budget (Idv. Bgt.
Lft.) over the ten scenarios of the LANDSAT data, for both the new
algorithm and the Chao-Golden-Wasil algorithm.
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Chapter 6

Multi-agent Adaptive Search with

Complex Error Models

In this chapter, we generalize the single-agent adaptive search problem of [Jedynak

et al., 2011] to multiple agents with correlated error models. We pose this as an

equivalent multi-region single-agent search problem where the agent can partition the

object space into multiple regions and inquire as to which region the object is located

in. We adopt a Bayes formulation similar to that in [Jedynak et al., 2011] with the

goal of reducing the final entropy of the conditional probability density of the object

location after a fixed number of observations. We solve the resulting stochastic control

problem. We provide a constructive algorithm for computing the optimal strategies

based on convex optimization. We derive a lower bound on the performance of the

minimum mean-square error estimator, and provide upper bounds on the estimation

error for special cases. Our results extend the results of [Tsiligkaridis et al., 2014] to

correlated error models with general measurement spaces.

For the case of multi-agent search with independent error models, we extend

the results of [Tsiligkaridis et al., 2014], to general asymmetric error models. We

show that the optimal sensing strategies can be obtained in terms of the solution of

decoupled scalar convex optimization problems, followed by a joint region selection

procedure. We describe a generalized symmetry condition for non-binary error models

that enables the analytic solution of the decoupled scalar optimization problems, and

provide a constructive solution for generating the optimal adaptive sensing strategies.
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We also consider the case where each agent is also allowed to choose among sensing

modes with different error models for their observations at different costs, extending

the results of [Sznitman et al., 2013] to the multi-agent case. We derive the optimal

policies for this problem and show that the optimal strategies can again be computed

in terms of the solution of single-agent problems followed by a joint region selection

procedure.

We further consider adaptive search of multiple objects of interest using multiple

agents. We derive an optimal sensing policy. For search of two objects in an interval

using two agents, we provide an explicit construction for determining adaptively the

sensing actions for each agent. We illustrate the performance of our proposed policy

in simulation, comparing to alternative policies based on spatial domain partition for

each agent.

The chapter is structured as follows: Section 6.1 contains the formulation and

results for the multi-agent search with correlated error models, and the equivalent

multi-region single-agent search problem. Section 6.2 contains the results for the

multi-agent search problem with independent error models. Section 6.3 contains the

results for multi-agent search problem where agents can control both the choice of

sensing area as well as the precision mode of that search. In Section 6.4, we study the

case where multiple objects of interest are present. Section 6.5 contains simulation

results that illustrate the performance of our approaches.

6.1 Correlated Error Models

6.1.1 Problem Formulation

Consider the problem of localizing a stationary point object whose position is denoted

by X, a continuous-valued random vector in a compact subset X of Rd (d ≤ 3 for

our purposes) with prior probability distribution that is absolutely continuous with
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respect to Lebesgue measure, with density p0(x). We assume this initial density has

finite differential entropy. We have M (M ≥ 2) agents that can collect measurements

of the object location at discrete times n = 1, . . . , N . The agent measurement model is

similar to that in [Jedynak et al., 2011], motivated by problems in group testing [Atia

and Saligrama, 2012]: at each time n, each agent m selects a region Amn , which is a

Lebesgue-measurable subset of X , and collects a measurement Y m
n that depends on

whether the object X is contained in the sensed region Amn . The measurements Y m
n

take values in a discrete set Y . Extensions to continuous-valued measurements are

straightforward provided one places restrictions on the admissible sets that can be

queried by agents to ensure Borel measurability of the resulting random variables.

Such restrictions are not needed when the measurements are discrete-valued.

A team decision at time n corresponds to a collection of observation regions

(A1
n, . . . , A

M
n ) for all M agents, where A1

n, . . . , A
M
n ⊂ X . Define the random vari-

ables

Zm
n = 1{X∈Amn }, for agent m at stage n

Let An = (A1
n, . . . , A

M
n ) denote the collection of sensing areas observed at stage n,

and Y n = (Y 1
n , . . . , Y

M
n ) denote the collection of noisy observations collected at stage

n, where Y n ∈ YM . The measurement process is described by conditional probability

distributions that represent correlated measurement errors across agents, of the form

P (Y n = y|X,An) = P (Y n = y|Z1
n, . . . , Z

M
n ) (6.1)

where (6.1) highlights the assumption that the measurement distribution depends

on whether the object is present in the observed region, and not on the specific

regions being observed. In addition, the measurements Y n,Y k are assumed to be

conditionally independent for k 6= n given the respective indicators Z1
n, . . . , Z

M
n and
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Z1
k , . . . , Z

M
k . The use of correlated errors across the multiple agents represents errors

created by fluctuations in the signatures associated with X, which can result in low

signal-to-noise measurements simultaneously in all agents observing a region that

contains X.

The assumption that the distribution of the measurements Y n depends only on

whether the object is included in the observation regions (A1
n, . . . , A

M
n ) is a general-

ization of the measurement model used in [Jedynak et al., 2011, Tsiligkaridis et al.,

2014]. It corresponds to agents that combine signals from multiple locations for sin-

gle processing. Examples of such agents are single pixel detectors that use wide-area

patterned illumination on a sparse field with only one reflector to detect the pres-

ence of the reflector in the illuminated areas; localization is accomplished by varying

the illumination pattern rather than by increasing the resolution of the illumination

beam [Sun et al., 2014]. This model also arises in transmission of information over

correlated memoryless binary channels [Cover and Thomas, 2012], and in group test-

ing for chemical sensing [Atia and Saligrama, 2012], where samples from different

regions are mixed to detect the presence of chemical agents. These agents exploit

the sparsity of the signal to obtain rapid localization with greatly reduced number of

measurements when compared with agents that measure small areas, similar to the

manner in which compressive sensing [Donoho, 2006] reconstructs the support of a

signal with a small number of measurements.

Our goal is to obtain measurements sequentially over N times to improve our

knowledge of the object location X. We wish to do this adaptively, exploiting the

past information collected by the agents. Denote the information history collected by

the agents after the measurements at time n have been obtained by:

Dn = {A1,Y 1, · · · ,An,Y n}
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Denote by pn(x) to be the conditional probability density of the object location X

given the information history Dn, so

pn(x) ≡ p(x|Dn)

We refer to this quantity as the information state at time n. The evolution of this

information state across stage is derived using Bayesian reasoning, as follows. Assume

that, at time n + 1, we know pn(x), and obtain a measurement Y n from observing

sensing areas An. Then,

pn+1(x) = pn(x)
P (Y n+1 = y|An+1, X = x)∫

X pn(σ)P (Y n+1 = y|An+1, X = σ)dσ
(6.2)

The above evolution can be viewed as a stochastic dynamical system for the

measure-valued information state pn+1(x), where the evolution depends on the finite-

valued random “disturbance” y, with conditional probability distribution

η(y) =

∫
X

pn(σ)P (Y n+1 = y|An+1, X = σ)dσ

that depends on the current information state pn(x) and the control action An+1.

As long as η(y) > 0, the resulting information state pn+1 is well-defined, and will

represent a probability density on X . For η(y) = 0, we arbitrarily define pn+1(x) =

pn(x).

To complete the formulation, we define admissible strategies and objectives for

the stochastic control problem. Let S denote the space of probability densities p(x)

over X . Let Γ(X ) denote the set of all Lebesgue-measurable subsets of X . We define

an adaptive joint sensing policy π = (π1, π2, · · · , πN) to be a sequence of functions

where πn : S → Γ(X )M will map the posterior density pn−1(x) into admissible batch

sensing regions An = (A1
n, . . . , A

M
n ). Let Π denote the space of all adaptive joint
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sensing policies.

In terms of objective, we will evaluate the quality of our knowledge of X after

collecting information Dn by its posterior differential entropy H(pn) defined as

H(pn) = −
∫
X

pn(x) log2 pn(x)dx

Our objective is to minimize H(pN) — the posterior differential entropy after N stages

of joint sensing:

inf
π∈Π

E[H(pN)|p0] (6.3)

Note that this objective is a nonlinear functional of the information state, unlike the

standard models for partially observed Markov decision processes [Bertsekas, 2005]

where the final objective is a linear functional of the information state.

The above dynamic decision problem can be viewed as a perfectly observed Markov

decision problem with infinite-dimensional state space S, stochastic dynamics with

discrete-valued disturbances (6.2), and terminal cost objective (6.3). Given the dis-

crete nature of the observations, concerns about measurability of strategies are simpli-

fied; our problem is a stochastic optimal control problem with countable disturbances

described in Chapter 3 of [Bertsekas and Shreve, 1978], which allows us to apply

dynamic programming techniques to characterize optimal strategies. An alternative

approach used in [Jedynak et al., 2011,Tsiligkaridis et al., 2014] is to restrict the re-

gions Am to unions of rectangular areas, enabling the use of stochastic control results

for Borel models.

We define the optimal value function V (pn, n) at stage n to be:

V (pn, n) = inf
πn+1,...,πN

E[H(pN)|pn]
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The optimal value function has to satisfy the Bellman equation [Bertsekas and Shreve,

1978]:

V (pn, n) = inf
An+1

EY n+1 [V (pn+1, n+ 1)|An+1, pn] (6.4)

Furthermore, if a policy π∗ satisfies

EY n+1 [V (pn+1, n+ 1)|π∗n+1(pn), pn] = V (pn, n)

for all pn, then the policy is optimal.

To obtain a solution, we will exploit the following equivalence: A set of observa-

tion regions by the collection of M agents, denoted by A = (A1, . . . , AM) induces a

partition of the region X into 2M subsets. For each k ∈ {0, . . . , 2M − 1}, denote the

dyadic expansion of k as iM iM−1 · · · i1. Then, the subset Bk in the partition can be

identified as

Bk = ∩Mm=1(Am)im

where we use the set notation (A)0 ≡ Ac and (A)1 ≡ A.

Thus, the sets Bk are defined as intersections of observation regions or their com-

plements, one for each agent. Selecting a set of observation regionsA corresponds to a

unique partition of X into 2M Lebesgue measurable subsets. Similarly, given any par-

tition {Bk, k = 0, . . . , 2M−1} of X into Lebesgue measurable subsets, let iM iM−1 · · · i1
denote the dyadic expansion of k. Then, define the sets

Am = ∪{k:im=1}B
k

Then, the partition {Bk} uniquely defines a set of M measurable regions A =

(A1, . . . , AM) to be observed by the M agents.

To solve the multi-agent problem for the optimal adaptive sensing regions A =
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(A1, . . . , AM), we will solve the single-agent, multi-region problem for the optimal

adaptive partition {B0, . . . , BK}, where K = 2M − 1. Note the following correspon-

dence: The object location X ∈ Bk if and only if the dyadic expansion of k is given

by ZMZM−1 · · ·Z1, where Zi = 1{X∈Ai}.

To simplify notation, define

fk(y) = P (Y = y|X ∈ Bk), k = 0, . . . , K

which, by our previous assumptions, depends only on whether X is in the region

Bk. A useful quantity in our development is the joint operating point at time n+ 1,

un+1 = {ukn+1, k = 0, . . . , K = 2M−1} for a collection of observed regions A resulting

in a partition B = {B0, . . . , BK}, given information state pn(x). This joint operating

point is defined as

ukn+1 =

∫
Bk

pn(σ)dσ ≥ 0 (6.5)

Since B is a partition of X , we have
∑K

k=0 uk = 1. With this notation, the denomi-

nator in (6.2) simplifies to

η(y) =
K∑
k=0

fk(y)uk

6.1.2 Optimal Policies for Multi-Region Search

To derive the optimal policy, we consider the reduction in expected posterior differen-

tial entropy H(pn)−E[H(pn+1)|Bn+1, pn] that results from collecting and processing

measurements at time n + 1 using a sensing partition Bn+1 based on information

state pn(x). The following theorem summarizes our result:

Theorem 6.1.1. The expected reduction in posterior differential entropy from pro-

cessing measurements collected by a sensing partition Bn+1 is given in terms of the
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joint operating point un+1 = (u0
n+1, . . . , u

K
n+1) in (6.5), as

ϕ(un+1) ≡ H(pn)− EY n+1 [H(pn+1)|Bn+1, pn]

= H(
K∑
k=0

fk(y)ukn+1)−
K∑
k=0

ukn+1H(fk(y))

where H is the standard Shannon entropy for discrete-valued distributions.

Proof. Let Bn+1 denote the partition induced by An+1. Define η0(y, x) = P (Y n+1 =

y|An+1, X = x). Using Bayes’ rule as in (6.2), we get

EY n+1 [H(pn+1)|Bn+1, pn]

=−
∑
y∈YM

η(y)
(∫
X

[pn(x)
η0(y, x)

η(y)
] log[pn(x)

η0(y, x)

η(y)
]dx
)

=−
∫
X

pn(x) log pn(x)dx

+
∑
y∈YM

∫
X

pn(x)η0(y, x) log η(y)dx

−
∫
X

pn(x)
∑
y∈YM

η0(y, x) log η0(y, x)dx

=H(pn)−
[
H(η(y))−

K∑
k=1

∫
X

pn(x)H(fk)1{x∈Akn+1}dx

]

=H(pn)−
[
H(

K∑
k=1

ukn+1fk)−
K∑
k=1

ukn+1H(fk)

]
�

One way of interpreting ϕ(un+1) is to consider un+1 as a probability distribution

for the values of a discrete-valued random variable Zn+1, with P (Zn+1 = k) = ukn+1.

Then,

ϕ(un+1) = I(Y n+1;Zn+1)
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where the mutual information for two discrete-valued random variables is defined

in terms of the Shannon entropy as I(Y ;Z) = H(Y ) − H(Y |Z). This is readily

established as

I(Y ;Z) = −
∑
y∈YM

K∑
z=0

P (y|z)P (z) log
[ K∑
z=0

P (y|z)P (z)
]

+
K∑
z=0

P (z)
∑
y∈YM

P (y|z) logP (y|z)

= −
∑
y∈YM

K∑
k=0

ukfk(y) log
[ K∑
k=0

ukfk(y)
]

+
K∑
k=0

uk
∑
y∈YM

fk(y) log fk(y)

= H(
K∑
k=0

fk(y)uk)−
K∑
k=0

ukH(fk(y))

Note that ϕ(u) = ϕ(u0, · · · , uK) as defined in Theorem 6.1.1 is strictly concave

over the simplex
∑K

k=0 u
k = 1, for uk ≥ 0, k = 0, · · · , K. This follows from the

strict concavity of the Shannon entropy H(f). Thus, it has a unique maximum value

achieved at a unique point u∗ = (u0∗, · · · , uK∗). Any partition Bn+1 for which the

statistics in (6.5) are equal to u∗ achieves the maximal differential entropy reduction

at stage n + 1. Note that the optimal operating point u∗ does not depend on the

posterior density pn(x) or the partition Bn+1.

Next, we show that, for any operating point u∗ and information state pn(x), there

exists a sensing partition Bn+1 for which u(Bn+1, pn) = u∗. Let d denote the di-

mension of the Euclidean space containing X , and let e denote the d-dimensional

vector of all ones. Since pn(x) corresponds to a distribution that is absolutely con-

tinuous, the cumulative distribution function Pn(x) =
∫ x
−∞ · · ·

∫ x
−∞ pn(x′)dx′ is con-

tinuous, and monotone non-decreasing on the diagonal x = αe, starting at 0 for

α <= −C, and increasing to 1 for α >= C for some C because of the compactness of
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X . Hence, for any u0∗, we can find a value a0 so that Pn(a0e) = u0∗, and we can set

B0
n+1 = {x ≤ a0e}∩X , where the inequality is interpreted element wise. Similarly, for

any u1∗ such that u0∗+u1∗ ≤ 1, we can find a1 ≥ a0 such that Pn(a1e)−Pn(a0e) = u1∗,

and set B1
n+1 = {a0e < x ≤ a1e} ∩ X . We continue this construction to obtain the

final aK = C, because
∑K

k=0 u
k∗ = 1. The final partition Bn+1 so constructed satisfies

u(Bn+1, pn) = u∗. Note that there are many other partitions that would also satisfy

this equality, which implies that the optimal partition is not unique. This approach

results in elements in the partition that are unions of a small number of rectangular

regions, rather than arbitrary measurable subsets.

What remains is to show the optimal solution to the multi-stage policy optimiza-

tion problem (6.3) can be constructed in terms of the above adaptive sensing policy.

Theorem 6.1.2. Let (u0∗, · · · , uK∗) = arg maxu=(u0,··· ,uK) ϕ(u) for ϕ(u) as defined

in Theorem 6.1.1. For each stage n+ 1, select a sensing partition Bn+1 that satisfies

u(Bn+1, pn) = u∗. Based on this partition, select observation regions for each agent as

Amn+1 = ∪k:im=1B
k
n+1, where im is the m− th digit in the dyadic expansion of k. Then,

this adaptive set of observation regions is optimal for problem (6.3). Furthermore,

the optimal value function is given by

V (pn, n) = H(pn)− (N − n)ϕ∗ (6.6)

where the constant ϕ∗ = ϕ(u0∗, · · · , uK∗).

Proof. To establish this, we show that (6.6) satisfies the Bellman equation (6.4) and

the above policy is a minimizing policy. The optimal value function is correct at stage

N , as V (pN , N) = H(pN). Assume by induction that the optimal value function

satisfies (6.6) for all k ≥ n+ 1. Then,

V (pn, n) = inf
A
EY n+1 [V (pn+1, n+ 1)|An+1 = A, pn]

= inf
A
EY n+1 [H(pn+1)− (N − n− 1)ϕ∗)|An+1 = A, pn]

= inf
A
EY n+1 [H(pn+1)|An+1 = A, pn]− (N − n− 1)ϕ∗

= inf
B
EY n+1 [H(pn+1)|Bn+1 = B, pn]− (N − n− 1)ϕ∗
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= H(pn)− sup
B

[
H(

K∑
k=1

ukn+1fk)−
K∑
k=1

ukn+1H(fk)

]
− (N − n− 1)ϕ∗

because of the equivalence of the partition B and the sensing areas A, and the results

of Theorem 6.1.1. Furthermore, we know that

sup
B

[
H(

K∑
k=1

ukn+1fk)−
K∑
k=1

ukn+1H(fk)

]
= ϕ∗

because, given pn, we have provided a construction for choosing a partitionBn+1 such

that pn(Bk
n+1) = uk∗, k = 1, . . . , K. Thus,

V (pn, n) = H(pn)− (N − n)ϕ∗

and the supremum is achieved by the feedback strategy π∗n+1(pn) = Bn+1. �

We note at this point that the optimal single stage entropy reduction ϕ∗ is equal to

the information-theoretic channel capacity C of a memoryless communication channel

with input the discrete variables Z and output the observations Y : both quantities

are defined by the same optimization problem.

Note the computational complexity of the solution: one must solve a strictly

concave maximization problem in 2M variables (which may be done off-line) to de-

termine the joint operating point u∗. The real-time computation requirements are to

update pn(x), and to determine at time n+ 1, the partition B based on pn(x) so that

u(Bn+1, pn) = u∗. The number of elements in the partition, 2M , grows exponentially

with the number of agents. In addition, a sampled form for the conditional density

pn(x) will require a number of samples that grow exponentially with the underlying

dimension of the search space.

An important property of the above solution is that the optimal feedback strategy

does not depend on the length of the planning horizon N . Thus, the resulting strate-
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gies are optimal for any duration of the planning horizon, yielding search algorithms

that are anytime-optimal no matter when the search terminates.

The above results exploit several special structures of our adaptive control prob-

lem, as discussed below:

• The object location must have a prior distribution over a continuous region

that is absolutely continuous with respect to Lebesgue measure. This leads

to conditional cumulative probability distributions that are continuous, and

enable us to construct strategies that satisfy the optimality conditions. This

would not be the case if the potential object locations had distributions that

were not absolutely continuous.

• The differential entropy objective function allows for separability of the contri-

bution of new information from past information, a critical step in the devel-

opment of optimality conditions. Replacing the objective by functions such as

Rényi entropy or other similar divergence measures requires additional condi-

tions to guarantee concavity as well as existence of minimizing strategies.

• The measurement error models do not depend on the size of the regions used in

the partitions at each stage, and depend on X only through the indicator that

X is in particular regions.

There are special cases where the optimal operating point is known explicitly.

One such case is when the measurement error model satisfies a special symmetry

condition. The error model from Z to Y is modeled as a noisy discrete memoryless

channel because of the conditional independence across time. Such channels are said

to be quasi-symmetric when the set of outputs YM can be partitioned into subsets

W` such that, for each subset, the sub-transition probability matrices P (y|z) for

y ∈ W`, z ∈ {0, . . . , K} satisfy the property that each row is a permutation of every
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other row, and each column sums up to the same subset-dependent constant. When

this channel has the property of quasi-symmetry [Alajaji and Chen, 2015], or the

property of symmetry as defined in [Gallager, 1968], the optimal operating point

satisfies (u0∗, · · · , uK∗) = ( 1
K+1

, . . . , 1
K+1

) ( [Gallager, 1968], Thm 4.5.2).

6.1.3 Bounds on Mean-Square Error

From Theorem 6.1.2, the maximal expected posterior entropy reduction is nϕ∗ after n

sensing stages are completed, where ϕ∗ is defined in Theorem 6.1.2. This allows us to

give a lower bound on the performance of the minimum mean-square error estimator,

following the framework established in Theorem 4 in [Tsiligkaridis et al., 2014]:

Theorem 6.1.3. Assume H(p0) is finite. Then, the minimum mean-square error

estimator at stage n X̂n =
∫
X xpn(x)dx under any admissible policy has the following

mean-square error lower bound:

E[||X − X̂n||22] ≥ d d
√
C0

2πe
2−

2nϕ∗
d

where d is the dimension of the object space and C0 = 22H(p0), and ϕ∗ is defined in

Theorem 6.1.2.

Proof. Let X̂n =
∫
X xpn(x)dx and Σn = E[(X − X̂n)(X − X̂n)T ]. By Theorem 17.2.3

in [Cover and Thomas, 2012] and Jensen’s inequality, under any policy ζ, we have

Eζ [H(pn)] ≤Eζ
[1

2
log((2πe)d det(Σn))

]
≤1

2
log(2πe)d +

1

2
log(det(Eζ [Σn]))

=
1

2
log((2πe)d det(Eζ [Σn]))

where det(·) denotes the matrix determinant. From Theorem 6.1.2, under any policy

ζ, we have Eζ [H(pn)] ≥ H(p0)− nϕ∗. By letting C0 = 22H(p0), we have

C02−2nϕ∗

(2πe)d
≤ 22Eζ [H(pn)]

(2πe)d
≤ det(Eζ [Σn])
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Since the determinant and the trace of a square matrix can be written as the product

and the sum of the eigenvalues of the matrix respectively, using the inequality of

arithmetic and geometric means we have

det(Eζ [Σn]) ≤
(Eζ [tr(Σn)]

d

)d
where tr(·) denotes the matrix trace.

Combining and rewriting the inequalities, we get

E[||X − X̂n||22] = Eζ [tr(Σn)] ≥ d d
√
C0

2πe
2−

2nϕ∗
d

�

This bound is tighter than the bound in [Tsiligkaridis et al., 2014] for the inde-

pendent error case, as it uses smaller exponents and constants. The lower bound

decays exponentially with the number of stages, at a rate that is proportional to the

maximal one-stage expected entropy reduction ϕ∗.

This lower bound applies to any search strategy, including optimal search strate-

gies that satisfy the conditions of Theorem 6.1.2. Obtaining an upper bound will

depend on the specific choice of optimal strategy. Finding such upper bounds is

closely related to finding bounds on the mean squared error of communication chan-

nels with perfect feedback. Unfortunately, most of the available bounds apply to

coding schemes that do not satisfy the optimality conditions in our problem. The

results of [Tsiligkaridis et al., 2014] cite the bound for the algorithm of [Burnashev

and Zigangirov, 1974], as described in [Castro and Nowak, 2008]. However, that al-

gorithm is a heuristic that is not optimal for our problem, or for any of the problems

discussed in [Tsiligkaridis et al., 2014].

To our knowledge, the only upper bound on the expected error of an optimal

algorithm was published recently in [Waeber et al., 2011], where they derived a bound

on the probability of error of Horstein’s original probabilistic bisection algorithm
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[Horstein, 1963]. This algorithm corresponds to the single-agent case, searching for an

object in a one-dimensional interval, with binary measurements and symmetric error

model. For this case, the symmetry of the error model results in u0∗ = u1∗ = 0.5, and

our construction selects an observation region A that is delineated by the median of

the distribution defined by the density pn−1(x), which is the probabilistic bisection

algorithm. We summarize the bound in Theorem 5.1 in [Waeber et al., 2011] below:

Theorem 6.1.4. ( [Waeber et al., 2011]) There exists a constant c(p) > 1 such that

E[|X −Xn|] ∈ o(c(p)−n)

where Xn is the median of the conditional distribution defined by pn−1(x) and 1 − p
is the probability of error in the binary symmetric channel.

Although the above result is for the median estimator and the error magnitude,

a similar exponential bound is easily derived for the mean-square error, as the proof

shows that the conditional probability density is concentrating on the point X. To

illustrate these bounds, we simulate the performance of a single agent with binary

symmetric errors, with probability of error 0.1, using 1000 Monte Carlo runs, for

an object X with uniform initial distribution on the unit interval [0, 1]. Figure 6·1
shows the decay of the upper and lower bounds, compared with the simulated mean

squared errors computed using the optimal algorithm. While both bounds decay

exponentially, the lower bound is a closer approximation of the actual mean squared

error.

It is straightforward to extend the upper bound to multiple agents acting in se-

quential order, so that only one agent collects a measurement at each time. However,

extension of the upper bound of [Waeber et al., 2011] to single agents with asymmetric

channels or to multiple agents with simultaneous measurements remains an unsolved

problem. In our experiment results later in the paper, we compute the empirical

mean-square error and the lower bound to illustrate the tightness of the bound.



123

Figure 6·1: Empirical mean squared error for single agent case, with
upper and lower bounds
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6.2 Independent Error Models

As a special case of the results in Section 6.1, we consider the case where the noisy

measurements collected by the M agents are conditionally independent across agents

and across times given the true object location X and the sensing regions Amn , n =

1, . . . , N,m = 1, . . . ,M . This makes the error channels from the true indicators

Zm
n to the measurements Y m

n independent memoryless channels. The conditional

independence implies the following statistical model for our measurements, as in

(6.1):

P (Y n = y|X,An) =
M∏
m=1

P (Y m
n = ym|Zm

n ) (6.7)

To simplify the exposition, define the measurement probability distributions

P (Y m
n = y|Zm

n = k) = fmk (y), y ∈ Y , k ∈ {0, 1}

Based on the conditional independence assumptions, the conditional density of the

joint measurements given the indicator variables Z1 = i1, . . . , Z
M = iM associated

with the sensing areas A1, . . . , AM and the state X, is given by

P (Y n = y|X,An) ≡ qiM :1
(y) =

M∏
m=1

fmim(ym) (6.8)

where we use iM :1 as a shorthand for (iM , . . . , i1).

This simplifies the dynamics for the conditional density pn(x) as defined by Bayes’

rule (6.2) as:

pn+1(x) = pn(x)
P (Y n+1 = y|An+1, X = x)∫

X pn(σ)P (Y n+1 = y|An+1, X = σ)dσ

=
pn(x)

∑
iM :1∈{0,1}M qiM :1

(y)1{x∈∩Mm=1(Amn )im}∫
X pn(σ)

∑
iM :1∈{0,1}M qiM :1

(y)1{σ∈∩Mm=1(Amn )im}dσ
(6.9)
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where we use the notation (A)0 ≡ Ac and (A)1 ≡ A if A is a subset of X .

In this case, the joint operating point of (6.5), denoted as u = {uiM :1
, i1, . . . , iM ∈

{0, 1}}, is

uiM :1
=

∫
∩Mm=1(Am)im

pn(σ)dσ ≥ 0 (6.10)

Then, P (Y n+1 = y|An+1, pn) ≡ η(y) is given by

η(y) =
∑

iM :1∈{0,1}M
qiM :1

(y1, . . . , yM)uiM :1

The expected entropy reduction of a collection of observation areas An+1 is now

given by:

ϕ(u) ≡ H(pn)− E[H(pn+1)|An+1, pn]

= H(
∑

iM :1∈{0,1}M
qiM :1

uiM :1
)−

∑
iM :1∈{0,1}M

uiM :1
H(qiM :1

) (6.11)

where qiM :1
(y1, . . . , yM),u are defined in (6.8), (6.10).

The results of Theorem 6.1.2 guarantee that there is a unique joint operating point

u∗ = {u∗iM :1
} that maximizes ϕ(u). Furthermore, we can always find a joint sensing

strategy that achieves this optimal value. This implies the optimal value function is

given by

V (pn, n) = H(pn)− (N − n)ϕ∗ (6.12)

and the optimal decisions at stage n could be computed via a joint strictly concave

maximization problem for u∗, followed by a region allocation problem to determine

{A1∗
n , . . . , A

M∗
n } based on pn−1(x). We show next that, for the special case of inde-

pendent error models considered in this section, the optimization problem for u∗ can

be decoupled to the solution of M scalar optimization problems, greatly reducing the
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computation complexity.

Consider the problem when there is only one agent present, as in [Jedynak et al.,

2011]. Define ϕm(u) to be the single agent expected differential entropy reduction that

agent m can achieve on its own by selecting its sensing area Am such that pn(Am) = u,

as

ϕm(u) = H(ufm1 + (1− u)fm0 )

− uH(fm1 )− (1− u)H(fm0 )

and define the maximum expected entropy reduction as

ϕm∗ = max
u

ϕm(u)

Theorem 6.2.1. Consider general discrete-output agent error models. Denote the

optimal operating points of each individual agent m as um∗ = arg maxum ϕ
m(um), m =

1, . . . ,M . Then the optimal operating point for joint sensing, i.e., u∗ = {u∗iM :1
} =

arg maxu ϕ(u), is given by

u∗iM :1
=

M∏
m=1

(um∗)im(1− um∗)1−im (6.13)

In addition, ϕ∗ =
∑M

m=1 ϕ
m∗.

Proof. We first prove that ϕ∗ ≤∑M
m=1 ϕ

m∗:

ϕ∗ =H(
∑

iM :1∈{0,1}M
u∗iM :1

qiM :1
)−

∑
iM :1∈{0,1}M

u∗iM :1
H(qiM :1

)

From the additivity property of the Shannon entropy, we have:

H(qiM :1
) =

M∑
m=1

(H(fm1 )1{im=1} +H(fm0 )1{im=0})
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∑
iM :1∈{0,1}M

u∗iM :1
H(qiM :1

) =
M∑
m=1

[ ∑
iM :1:im=1

u∗iM :1
H(fm1 ) +

∑
iM :1:im=0

u∗iM :1
H(fm0 )

]
Similarly, note that the term

∑
iM :1∈{0,1}M u

∗
iM :1

qiM :1
specifies a joint probability

distribution for the variables Y 1, . . . , Y M , with marginal probability distribution for

each variable Y m given by

gm(y) =
∑

iM :1:im=1

u∗iM :1
fm1 (y) +

∑
iM :1:im=0

u∗iM :1
fm0 (y)

Combining these relations and using the subadditivity property of the Shannon

entropy, we obtain

ϕ∗ ≤
M∑
m=1

H(gm)−
M∑
m=1

[ ∑
iM :1:im=1

u∗iM :1
H(fm1 )

+
∑

iM :1:im=0

u∗iM :1
H(fm0 )

]
Note that the numbers am =

∑
iM :1:im=1 u

∗
iM :1

and bm =
∑

iM :1:im=0 u
∗
iM :1

are non-

negative and sum up to 1, and thus represent a possible operating point for agent m.

Since (um∗, 1− um∗) is the optimal operating point that maximizes ϕm(u), we have

ϕ∗ ≤
M∑
m=1

H(gm)−
M∑
m=1

[ ∑
iM :1:im=1

u∗iM :1
H(fm1 )

+
∑

iM :1:im=0

u∗iM :1
H(fm0 )

]
=

M∑
m=1

ϕm(am) ≤
M∑
m=1

ϕm∗

Given um∗, define

uiM :1
=

M∏
m=1

(um∗)im(1− um∗)1−im

Note that
∑

iM :1∈{0,1}M uiM :1
= 1, so this is a valid joint operating point u for the

multi-agent problem. Then,
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ϕ(u) = H(
∑

iM :1∈{0,1}M
uiM :1

qiM :1
)−

∑
iM :1∈{0,1}M

uiM :1
H(qiM :1

)

=H(
∑

iM :1∈{0,1}M

M∏
m=1

(um∗)im(1− um∗)1−imqiM :1
)

−
∑

iM :1∈{0,1}M
(
M∏
m=1

(um∗)im(1− um∗)1−im)H(qiM :1
)

Since

∑
iM :1∈{0,1}M

(
M∏
m=1

(um∗)im(1− um∗)1−im)qiM :1

=
∑

iM :1∈{0,1}M

M∏
m=1

[(um∗)im(1− um∗)1−imfmim ]

=
M∏
m=1

[um∗fm1 + (1− um∗)fm0 ]

∑
iM :1∈{0,1}M

(
M∏
m=1

(um∗)im(1− um∗)1−im)H(qiM :1
)

=
∑

iM :1∈{0,1}M
(
M∏
m=1

(um∗)im(1− um∗)1−im)
M∑
k=1

H(fkik)

=
M∑
k=1

∑
iM :1∈{0,1}M

(
M∏
m=1

(um∗)im(1− um∗)1−im)H(fkik)

=
M∑
k=1

[uk∗H(fk1 ) + (1− uk∗)H(fk0 )]

Thus,

ϕ(u) = H
( M∏
m=1

[
1∑
j=0

fmj (um∗)j(1− um∗)1−j]
)

−
M∑
m=1

1∑
j=0

(um∗)j(1− um∗)1−jH(fmj )
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=
M∑
m=1

[
H
(
um∗fm1 + (1− um∗)fm0

)
− um∗H(fm1 )− (1− um∗)H(fm0 )

]
=

M∑
m=1

ϕm∗

Since ϕ∗ = maxu ϕ(u) ≤ ∑M
m=1 ϕ

m∗ and ϕ(u) has a unique optimal point, se-

lecting u as (6.13) will give us the optimal operating point for ϕ(u) and we have

ϕ∗ =
∑M

m=1 ϕ
m∗. �

Thus, the optimal joint operating point for the multiple Boolean agent case

with discrete measurements can be obtained from the optimal single-agent operating

points. Furthermore, we can now use the construction of Section 6.1.2 to obtain par-

titions of the region X that achieve the probabilities required by the joint operating

point, and combine them to obtain the joint optimal sensing areas for each agent

m ∈ {1, . . . ,M}.
One way to understand the results of Theorem 6.2.1 is to connect the maximal

entropy reduction at each stage to the concept of channel capacity, as was done

in [Tsiligkaridis et al., 2014]. Each agent m can be viewed as a discrete memoryless

stationary channel whose input is Zm ∈ {0, 1}, output is Y m ∈ Y , and transition prob-

abilities are specified by fm1 and fm0 . Furthermore, we can regard qiM :1
(y1, . . . , yM) de-

fined in (6.8) as the transition probabilities of a “mixed” vector (product) channel for

all the M agents used in joint sensing, shown in Figure 6·2. The inputs of this mixed

channel are vector (Z1, . . . , ZM) ∈ {0, 1}M , and the outputs are (Y 1, . . . , Y M) ∈ YM .

The capacity of this channel is equal to ϕ∗, the solution of our optimization problem

in Theorem 6.2.1.

The results of Theorem 6.2.1 can also be used to identify an equivalence between

joint sensing and sequential sensing for Boolean agents with discrete measurements,

similar to the results in [Tsiligkaridis et al., 2014] for agents with binary measure-
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Figure 6·2: The “mixed” channel.

ments. As in [Tsiligkaridis et al., 2014], a sequential sensing scheme divides each

stage into M sub-stages. At each substage m, the m-th agent selects a sensing area

based on information state pn,m−1, where pn,0 ≡ pn(x), and collects its noisy mea-

surement. This measurement is processed to obtain an updated probability density

for the object location pn,m(x). This information is made available to the next agent

m + 1, which in turn selects its query based on pn,m(x). The stage completes when

the M -th agent collects its measurement, and uses it to update pn,M−1(x) to produce

pn+1(x).

From [Jedynak et al., 2011] we know that the optimal policies are the ones that

select a sensing area to reduce maximally the expected posterior entropy in each

single substage. Thus, the optimal expected differential entropy reduction for the

sequential policy at the end of one cycle is precisely
∑M

m=1 ϕ
m(um), which is the same

value ϕ∗ that would be achieved by the joint sensing scheme in Theorem 6.2.1. This

establishes the following lemma for general discrete observation Boolean agents.
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Lemma 6.2.2. Consider general discrete-output agent error models for both the se-

quential and joint sensing models described above. Then, the optimal expected poste-

rior entropy achievable at the end of a stage is the same for both sequential and joint

sensing.

There is a further simplification where the optimal operating points for the joint

sensing problem can be computed analytically. The results in [Tsiligkaridis et al.,

2014] show that, when each of the M agents has a binary symmetric error model, the

optimal operating points are u∗iM :1
= 1

2M
, and the optimal individual agent operating

points are um∗ = 1/2. We extend this further to non-binary error models where

|Y| ≥ 2. Specifically, we consider the case of Boolean agents with error models that

correspond to quasi-symmetric memoryless channels [Alajaji and Chen, 2015] (also

called symmetric discrete memoryless channels in [Gallager, 1968]). For Boolean

agents, quasi-symmetric error models satisfy the following condition:

Definition 6.2.3 (Symmetry condition). A Boolean agent has a quasi-symmetric

error model if there exists a permutation χ() : Y → Y such that, for all y ∈ Y,

f1(y) = f0(χ(y)) and f0(y) = f1(χ(y)).

The implications of having quasi-symmetric error models are:

H(f1) = H(f0)∑
y∈Y

f1(y) log
f1(y) + f0(y)

2
=
∑
y∈Y

f0(y) log
f1(y) + f0(y)

2

These lead to the well-known result [Alajaji and Chen, 2015,Gallager, 1968] that

the optimal capacity for quasi-symmetric discrete memoryless channels is achieved

by a uniform input distribution. For Boolean agents, this means that the optimal

sensing area at stage n with information state pn−1 is to pick a subset An ∈ X
such that

∫
x∈An pn−1(x)dx = 1/2. This establishes the following result as a direct

application of Theorem 6.2.1:
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Corollary 6.2.4. If we have M Boolean agents with quasi-symmetric (albeit different)

error models, then the maximum value of ϕ(u) occurs at u∗iM :1
= 2−M .

When measurement values Y are a subset of the real line, f0(y), f1(y) are given

probability densities. A sufficient condition for a single Boolean agent to achieve its

optimal capacity with uniform input distribution u = 0.5, 1 − u = 0.5 is that there

exist some constant α such that f0(y) = f1(α − y) for all y. These conditions are

satisfied when the error models correspond to additive white Gaussian channels, so

that

Yn = h(Zn) + wn

where h(Zn) is a function of the Bernoulli variable Zn and wn is zero-mean with

Gaussian distribution.

6.3 Independent Error Models with Precision Mode Selec-

tion

In [Sznitman et al., 2013], Sznitman et al. generalized [Jedynak et al., 2011] to the

setting where at each sensing stage, the Boolean agent is allowed to choose a precision

mode from a finite number of precision modes, in addition to its observed subset.

Different precision modes will trigger different agent error models, but there are also

costs associated with the precision modes. Precision modes with better error models

will cost more to use, but may result in greater reduction in differential entropy. In

this section, we extend our results to the Boolean multi-agent joint search problem

with independent errors, allowing each agent to choose its precision mode at each

stage.

Assume that for the m-th agent, the set of its possible precision modes is Lm =

{1, . . . , Lm}. A joint search decision at stage n consists of selecting both sensing

areas and precision modes for all M agents (A1
n, l

1
n, . . . , A

M
n , l

M
n ), where Amn ⊂ X and
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lmn ∈ Lm for m = 1, . . . ,M .

The corresponding error models of the m-th agent under precision mode lmn = l is

characterized by fm,l1 and fm,l0 , defined as:

P (Y m
n = y|Amn = A, lmn = l, X) =


fm,l1 (y) X ∈ A

fm,l0 (y) X /∈ A

When agent m selects a precision mode lmn = l, it incurs a cost Wm(l). Note that this

cost depends on the agent index m and the precision mode l, but does not depend on

the sensing area A or the time instance n (although this last restriction can be easily

relaxed).

Define the information state pn(x) = p(x|(A1, l1),Y 1, . . . , (An, ln),Y n). The

state evolves according to Bayes’ rule as before, where the choices of precision modes

are used to select the appropriate likelihoods for interpreting the observed measure-

ments Y . A joint sensing policy π = (π1, . . . , πN) with precision modes selection is

a sequence of functions that map the information state pn−1(x) to admissible batch

sensing and precision modes (An, ln) = (A1
n, l

1
n, . . . , A

M
n , l

M
n ) at each stage n. Denote

the policy space by Π.

Our joint sensing objective is to minimize the sum of the final-stage expected

posterior differential entropy and the total cost of all agents discounted by a factor

γ. The resulting optimization problem is :

inf
π∈Π

E[H(pN) + γ

N∑
t=1

M∑
m=1

Wm(lmt )|p0]

This stochastic control problem fits the countable disturbance model of [Bertsekas

and Shreve, 1978]. Define the optimal value function V (pn, n) at stage n to be:

V (pn, n) = inf
πn+1,...,πN

E[H(pN)+
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γ

N∑
t=n+1

M∑
m=1

Wm(lmt )|pn]

The Bellman equation for this problem is:

V (pn, n) = inf
An+1,ln+1

EYn+1 [V (pn+1, n+ 1)+

γ

M∑
m=1

Wm(lmn+1)|(An+1, ln+1), pn]

If a policy π ∈ Π achieves equality in the Bellman equation, it is an optimal policy.

Following our previous approach, consider a set of sensing decisions (An+1, ln+1)

at stage n+ 1. Define the joint operating point u = {uiM :1
, i1, . . . , iM ∈ {0, 1}} as

uiM :1
=

∫
∩Mm=1(Am)im

pn(σ)dσ ≥ 0 (6.14)

For a given set of sensing decisions at stage n + 1, consider the one-stage gain

to be the expected reduction in differential entropy minus the cost of the precision

modes by the agents, as

Ĝ(pn,An+1, ln+1) ≡ H(pn)− EYn+1 [H(pn+1)+

γ
M∑
m=1

Wm(lmn+1)|(An+1, ln+1), pn]

We have the following characterization:

Lemma 6.3.1. Define the function

G(u, l) = H(
∑

iM :1∈{0,1}M
qliM :1

uiM :1
)−

∑
iM :1∈{0,1}M

uiM :1
H(qliM :1

)− γ
M∑
m=1

Wm(lm) (6.15)

where u(·) is defined from pn and A as in (6.14) and

qliM :1
(y1, . . . , yM) =

M∏
m=1

fm,l
m

im
(ym), ym ∈ Y
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Then, for all sensing decisions, the one-stage gain can be expressed as

Ĝ(pn,An+1, ln+1) ≡ G(un+1, ln+1)

The proof is straightforward, and follows the same arguments as Theorem 6.1.1.

The dependence of the one stage gain on the information state and the selected sensing

areas is summarized by the joint operating point u and the selected precision modes

l. This structure is exploited to derive the main result:

Theorem 6.3.2. Consider the problem of finding the optimal sensing areas and pre-

cision modes for the Boolean multiagent problem with independent errors. Define

(u∗, l∗) ∈ arg maxu,lG(u, l). Then, at stage n, any policy that chooses batch sensing

and precision modes (An, ln) such that ln = l∗ = (l1∗, . . . , lM∗) and u(An, pn−1) = u∗

is optimal.

Furthermore, the optimal value function has the following closed-form expression:

V (pn, n) = H(pn)− (N − n)G∗

where G∗ = G(u∗, l∗).

Proof. The optimal value function V (pN , N) = H(pN)−(N−N)G∗ = H(pN) satisfies

the hypothesized form at the terminal time N . For n < N , we have:

V (pn, n) = inf
An+1,ln+1

EYn+1 [V (pn+1, n+ 1)

+ γ

M∑
m=1

Wm(lmn+1)|(An+1, ln+1), pn]

Assume inductively that V (pn+1, n+ 1) = H(pn+1) + (N − n− 1)G∗; then,

EYn+1 [V (pn+1, n+ 1)+

γ

M∑
m=1

Wm(lmn+1)|(An+1, ln+1), pn]

=EYn+1 [H(pn+1) + (N − n− 1)G∗

+ γ
M∑
m=1

Wm(lmn+1)|(An+1, ln+1), pn]
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=H(pn)−G(un+1, ln+1) + (N − n− 1)G∗

by Lemma 6.3.1.

For fixed l, G(u, l) is strictly concave over
∑1

i1=0 · · ·
∑1

iM=0 uiM :1
= 1 due to the

strict concavity of the Shannon entropy. Thus, G∗ = supu,lG(u, l) exists. Further-

more, we know from the discussion after Theorem 6.1.1 that, for any density pn(x)

and desired joint operating point u, there exists joint sensing areas An+1 such that

the probabilities u(An+1, pn) = u. Thus,

V (pn, n) = inf
An+1,ln+1

[H(pn)−G(un+1, ln+1)

+ (N − n− 1)G∗]

= H(pn)− sup
An+1,ln+1

G(un+1, ln+1)− (N − n− 1)G∗

= H(pn)− (N − n)G∗

Note that supu,lG(u, l) = maxu,lG(u, l) is achieved at some (u∗, l∗) because it is

the maximum of a finite number of strictly concave functions defined over the compact

M -dimensional simplex. Thus, the optimal strategies are given by any (An+1, ln+1)

such that ln+1 = l∗, and u(An+1, pn) = u∗. �

For each l, the function G(u, l) is strictly concave in u. Thus, we can find the

maximum value and maximizing argument for each l, and then select the maximum

value among the possible choices of l to obtain (u∗, l∗). The maximizing l∗ may not

be unique, as there can be multiple precision modes with the same maximum value.

If the agent error models are stage-invariant, there is an optimal strategy where each

agent will choose the same precision mode at every sensing stage.

We now show that optimal strategies can be computed from the solution of single

agent problems: Let

Gm(u, l) = H(ufm,l1 (y) + (1− u)fm,l0 (y))−

uH(fm,l1 (y))− (1− u)H(fm,l0 (y))− γWm(l) (6.16)
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and let (um∗, lm∗) = arg maxu,lG
m(u, l) denote an optimal operating point and choice

of precision mode for agent m when it searches by itself.

Theorem 6.3.3. Let (um∗, lm∗) = arg maxu,lG
m(u, l) denote an optimal operating

point and choice of precision mode for each agent m = 1, . . . ,M when searching as

a single agent. Then, an optimal joint operating point and precision modes for joint

sensing (u∗, l∗) can be obtained as l∗ = (l1∗, . . . , lM∗), and

u∗iM :1
=

M∏
m=1

(um∗)im(1− um∗)1−im (6.17)

In addition, G∗ =
∑M

m=1G
m∗, where Gm∗ = Gm(um∗, lm∗).

Proof. We first prove that G∗ ≤∑M
m=1 G

m∗:

G∗ + γ
M∑
m=1

Wm(lm∗) = H(
∑

iM :1∈{0,1}M
u∗iM :1

ql
∗
iM :1

)

−
∑

iM :1∈{0,1}M
u∗iM :1
H(ql

∗
iM :1

)

≤
M∑
m=1

[H(
∑

iM :1:im=1

u∗iM :1
fm,l

m∗
1 +

∑
iM :1:im=0

u∗iM :1
fm,l

m∗
0 )

−
∑

iM :1:im=1

u∗iM :1
H(fm,l

m∗
1 )−

∑
iM :1:im=0

u∗iM :1
H(fm,l

m∗
0 )]

The inequality results from the subadditivity and additivity properties of the Shannon

entropy. Then, since (um∗, lm∗), m = 1, . . . ,M , are the optimal points of Gm(um, lm),

m = 1, . . . ,M ,

G∗ + γ

M∑
m=1

Wm(lm∗)

≤
M∑
m=1

[
H
(
um∗fm,l

m∗
1 + (1− um∗)fm,lm∗0

)
−
(
um∗H(fm,l

m∗
1 ) + (1− um∗)H(fm,l

m∗
0 )

)]



138

=
M∑
m=1

Gm∗ + γ

M∑
m=1

Wm(lm∗)

Let l = (l1∗, . . . , lM∗), and uiM :1
=
∏M

m=1(um∗)im(1 − um∗)1−im . Substituting into

G(u, l), and following an argument similar to the proof of Theorem 6.2.1, we have

G(u, l) + γ

M∑
m=1

Wm(lm∗)

= H(
∑

iM :1∈{0,1}M
uiM :1

qliM :1
)−

∑
iM :1∈{0,1}M

uiM :1
H(qliM :1

)

= H
( M∏
m=1

[
1∑
j=0

fm,l
m∗

j (um∗)j(1− um∗)1−j]
)

−
M∑
m=1

1∑
j=0

(um∗)j(1− um∗)1−jH(fm,l
m∗

j )

=
M∑
m=1

[
H
( 1∑
j=0

fm,l
m∗

j (um∗)j(1− um∗)1−j
)

−
1∑
j=0

(um∗)j(1− um∗)1−jH(fm,l
m∗

j )
]

=
M∑
m=1

Gm∗ + γ
M∑
m=1

Wm(lm∗)

Since G∗ = maxu,lG(u, l) ≤ ∑M
m=1 G

m∗, selecting (u, l) as (6.17) will give us an

optimal operating point for G(u, l) and we have G∗ =
∑M

m=1 G
m∗. �

Note the resulting computation complexity for the algorithm. For each agent m,

it must solve Lm scalar concave maximization problems to obtain the maximum in

(6.16). Given the operating points of all the agents, the joint operating point u∗iM :1

is computed as in (6.17). Using this operating point, and the statistic pn−1(x), 2M

regions Bk are constructed such that:

u∗iM :1
=

∫
Bk

pn−1(x)dx



139

Finally, the observation regions for each agent Amn are constructed as

Amn = ∪k:im=1B
k

where iM iM−1 · · · i1 is the dyadic expansion of k.

The results for joint precision mode and sensing area optimization can be readily

extended to the correlated noise case in Section 6.1. However, the complexity of

the resulting optimization algorithm increases greatly. In essence, one must solve

L1×L2 · · ·×LM strictly convex maximization problems in 2M variables to determine

the best combination of joint operating modes and precision mode selections. This

makes the results difficult to apply in situations where the parameters of the sensing

problem are determined in real-time, requiring that these optimizations be part of

real-time computations.

6.4 Search of Multiple Objects

In this section, we extend our results to the search of multiple objects. Consider

searching for J stationary objects X1, . . . , XJ in a compact subset X of Rd using M

search agents. We write X1, . . . , XJ in a compact way as XJ :1. XJ :1 takes values in

the expanded search space Ω = X J . Assume that the number of objects J is known,

and that we have prior knowledge of XJ :1, represented by a joint density p0(xJ :1) over

Ω, which is absolutely continuous with respect to Lebesgue measure.

At each stage, the m-th agent can select a Lebesgue measurable subset of X ,

denoted by Amn , to search. Define an indicator variable Zm
n = 1{∃j:Xj∈Amn } which

indicates if any object lies in the sensing region Amn . Assume that the measurement

Y m
n takes values from a discrete set Y and is subject to the following error model:
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Pr(Y m
n = y|XJ :1, A

m
n ) =


fm1 (y), if Zm

n = 1

fm0 (y), if Zm
n = 0

Thus, the measurement error of Y m
n depends on the true object locations XJ :1 and

the sensing region Amn only through the indicator Zm
n . This measurement error model

is similar to the one used in group testing [Du and Hwang, 1993], but different from

the one used in [Rajan et al., 2015], where the measurement errors depend on the

number of objects in the sensing region Amn .

Assume that the measurements of all agents are conditionally independent across

agents and across stages given the true object locations XJ :1 and the sensing decisions

An = (A1
n, . . . , A

M
n ). Given Z1

n = i1, . . . , Z
M
n = iM associated with the sensing regions

A1
n, . . . , A

M
n and the true object locations XJ :1, the conditional density of the joint

measurements is:

Pr(Y n = y|XJ :1,An) =
M∏
m=1

fmim(ym) ≡ qiM :1
(y)

where we use iM :1 as a shorthand for (iM , . . . , i1).

Define the information history Dn as the collection of the past sensing decisions

and measurements up to time n:

Dn = {A1,Y 1, . . . ,An,Y n}

and define the information state of our search problem as the posterior density of

XJ :1 in the expanded search space Ω given the history Dn, denoted by pn(xJ :1):

pn(xJ :1) = p(xJ :1|Dn)

This information state evolves according to Bayes’ rule when the observed values

for Y n+1 = y, as follows:
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pn+1(xJ :1) = pn(xJ :1)
η0(y, xJ :1)

η(y)
(6.18)

where

η0(y, xJ :1) ≡ P (Y n+1 = y|XJ :1 = xJ :1,An+1)

=
∑

iM :1∈{0,1}M
qiM :1

(y)1{∃xj :xj∈∩Mm=1(Amn )im}

and

η(y) ≡P (Y n+1 = y|An+1, Dn)

=

∫
Ω

pn(ωJ :1)
∑

iM :1∈{0,1}M
qiM :1

(y)1{∃ωj :ωj∈∩Mm=1(Amn )im}dωJ :1

Define the joint operating point u = {uiM :1
, i1, . . . , iM ∈ {0, 1}} as

uiM :1
=

∫
Ω

pn(ωJ :1)1{∃ωj :ωj∈∩Mm=1(Amn )im}dωJ :1

Then, η(y) =
∑1

i1,...,iM=0 qiM :1
(y)uiM :1

.

Define a joint sensing policy π = (π1, π2, · · · , πN) to be a sequence of functions

which maps the information state pn−1 to admissible sensing regions An at each stage

n.

Define the posterior differential entropy H(pn) as

H(pn) = −
∫
Ω

pn(xJ :1) log2 pn(xJ :1)dxJ :1

As before, our objective is to find a policy π to minimize the expected value of

H(pN) after N search stages:

inf
π∈Π

E[H(pN)|p0]



142

To solve the problem in a stochastic control framework, define the optimal value

function V (pn, n) at stage n to be

V (pn, n) = inf
πn+1,...,πN

E[H(pN)|pn] (6.19)

A policy π is optimal if it satisfies the Bellman equation at each stage:

V (pn, n) = inf
An+1=πn(pn)

EY n+1 [V (pn+1, n+ 1)|An+1, pn]

We first show that the expected one-stage reduction in posterior differential en-

tropy is a function of the joint operating point u.

Lemma 6.4.1. Given the search decision at time n+ 1 to be An+1 = (A1
n, . . . , A

M
n ),

the expected one-stage reduction in posterior differential entropy is

ϕ(u) ≡H(pn)− E[H(pn+1)|An+1 = (A1
n, . . . , A

M
n ), pn]

=H(
∑

iM :1∈{0,1}M
qiM :1

uiM :1
)−

∑
iM :1∈{0,1}M

uiM :1
H(qiM :1

)

where H is the standard Shannon entropy for discrete-valued distributions.

Proof.

EYn+1 [H(pn+1)|An+1, pn]

=
∑
y∈YM

H(pn+1)P (Y n+1 = y|An+1, pn)

=H(pn) +
∑
y∈YM

∫
Ω

pn(xJ :1)η0(y, xJ :1) log η(y)dxJ :1

−
∫
Ω

pn(xJ :1)
∑
y∈YM

η0(y, xJ :1) log η0(y, xJ :1)dxJ :1

=H(pn)−
[
H(η(y))−

∫
Ω

pn(xJ :1)H(η0(y, xJ :1))dxJ :1

]
=H(pn)− ϕ(u) �

Note that ϕ(u) depends on the information state pn(xJ :1) and the search deci-
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sion An+1 only through the joint operating point u. Following the strict concavity

of the Shannon entropy H(·), ϕ(u) is a strictly concave function over the simplex∑
iM :1∈{0,1}M iiM :1

= 1 and thus it has a unique maximum achieved at the optimal

joint operating point u.

We now provide a sufficient condition for optimal search policies.

Theorem 6.4.2. Let u∗ ∈ arg minu ϕ(u) be the optimal joint operating point for ϕ(u)

as defined in Lemma 6.4.1. If for the given pn−1(xJ :1) at each stage n = 1, . . . , N ,

there exists decision An = (A1
n, . . . , A

M
n ) such that u(An, pn−1) = u∗, then selecting

such search decisions An adaptively from stage 1 to N constitutes an optimal policy.

Moreover, the optimal value function in (6.19) has a closed-form expression:

V (pn, n) = H(pn)− (N − n)ϕ∗

where the constant ϕ∗ = ϕ(u∗).

Proof. We prove the result by induction. At time N , the value function is V (pN , N) =

H(pN). Assume that for k ≥ n+ 1, the value function has the proposed form. Then

by Lemma 6.4.1,

V (pn, n) = inf
An+1

E[V (pn+1, n+ 1)|An+1, pn]

= inf
An+1

E[H(pn+1)− (N − n− 1)ϕ∗|An+1, pn]

=H(pn)− sup
An+1

ϕ(u(An+1, pn))− (N − n− 1)ϕ∗

=H(pn)− (N − n)ϕ∗

Hence, from Lemma 6.4.1 we can see that if for the given posterior density pn, there

exists An+1 that satisfies u(An+1, pn) = u∗, then selecting such An+1 will satisfy the

Bellman equation and the resulting policy is optimal. �

We now show how to construct the decision An+1 for two objects x1 and x2 in

X = [0, 1] using two agents as in Figure 6·3. The first agent searches A1
n+1 = [a1, b1] ⊂

X and the second agent searches A2
n+1 = [a2, b2] ⊂ X . The expanded search space is

Ω = [0, 1]2.
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For ease of exposition, define the joint operating point u = (u11, u10, u01, u00) as

u11 ≡
∫
Ω

1{x1∈A1
n+1 or x2∈A1

n+1}1{x1∈A2
n+1 or x2∈A2

n+1}pn(x1, x2)dx1dx2

u10 ≡
∫
Ω

1{x1∈A1
n+1 or x2∈A1

n+1}1{x1 /∈A2
n+1 and x2 /∈A2

n+1}pn(x1, x2)dx1dx2

u01 ≡
∫
Ω

1{x1 /∈A1
n+1 and x2 /∈A1

n+1}1{x1∈A2
n+1 or x2∈A2

n+1}pn(x1, x2)dx1dx2

u00 ≡
∫
Ω

1{x1 /∈A1
n+1 and x2 /∈A1

n+1}1{x1 /∈A2
n+1 and x2 /∈A2

n+1}pn(x1, x2)dx1dx2

Let a1 = 0. Next, select b2 such that

1∫
b2

1∫
b2

pn(x1, x2)dx1dx2 = u00

This integral corresponds to the area of the top right square in orange. Then select

b1 such that

1∫
b1

1∫
b1

pn(x1, x2)dx1dx2 = u00 + u01

This corresponds to both the orange and the blue areas. The above steps are realizable

since the related integrals are continuous monotone functions.

Finally, given b2 already fixed, we can select a2 such that

a2∫
0

a2∫
0

pn(x1, x2)dx1dx2 +

1∫
b2

a2∫
0

pn(x1, x2)dx1dx2 +

a2∫
0

1∫
b2

pn(x1, x2)dx1dx2 = u10

It corresponds to the yellow area. This can be done if

b1∫
0

b1∫
0

pn(x1, x2)dx1dx2 +

1∫
b2

b1∫
0

pn(x1, x2)dx1dx2 +

b1∫
0

1∫
b2

pn(x1, x2)dx1dx2 ≥ u10



145

The resulting partition is shown in Figure 6·3.

Figure 6·3: One way of realizing (u11, u10, u01, u00) given pn(x1, x2).
A1
n+1 = [a1, b1] and A2

n+1 = [a2, b2] partition the domain of pn(x1, x2)
into four disjoint regions, shown with different colors.

Note that the above construction results in overlapping intervals of observation

for the two agents, where the amount of overlap is controlled adaptively based on the

posterior probability density pn(x1, x2). The construction is suitable for two agents.

When there are more than two agents in use, constructing a search decision for which

the joint operating point u = (u11, u10, u01, u00) achieves its optimal value is more

complex. Furthermore, it is impossible to have search decisions consisting of single

intervals in most cases.
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6.5 Experiments

6.5.1 Experiments for Single Object

In this section, we illustrate the performance of our algorithms using simulated scenar-

ios. We consider scenarios where the object location is in the unit square X = [0, 1]2,

with initial density uniformly distributed in the area. The scenarios include two

agents, denoted as 1 and 2, that will cooperate and share their sensed measurements

of the object position X. We assume that the agents only have one precision mode.

Denote the areas sensed at time n by each of the agents as A1
n, A2

n.

In terms of sensing errors, we first consider a correlated error model. We assume

that each agent returns a binary measurement y ∈ {0, 1}, which is a noisy version

of the indicator function that the object X is in the interrogated region. This bi-

nary measurement corresponds to a detector algorithm, where each agent detects the

presence of a signal among background noise in the area of observation. The signal

strength is random, and contributes to the correlated errors among the agents; the

performance statistics of the agent were computed using the probabilities of error from

an unknown-signal-in-noise model, as in [Van Trees, 2004]. The resulting correlated

error model is given by Table 6.1 a). The second case uses agents with independent

error models, as the signal strength is modeled as deterministic, but in an unknown

location. We specify the error distribution in terms of the marginal distributions

fmk ,m = 1, 2, k = 0, 1 in Table 6.1 b). Note that, in the correlated error model, the

agents have greater probability of agreeing on a measurement, which corresponds to

a significant part of the error being created by randomness in the signature of the

object of interest.

For these problems, computation of a greedy solution to minimize expected mean

squared error at each stage is a formidable task, as it requires searching over all

possible combinations of sensing regions for each agent. With the posterior differential
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Table 6.1: The agent specifications for two types of Boolean agents:
correlated and independent errors

y =(0,0) y =(0,1) y =(1,0) y =(1,1)
(0,0) 0.62 0.17 0.17 0.04
(0,1) 0.21 0.57 0.06 0.16
(1,0) 0.11 0.03 0.68 0.18
(1,1) 0.11 0.02 0.16 0.71

a) Correlated

y = 0 y = 1
f 1

0 0.79 0.21
f 1

1 0.14 0.86
f 2

0 0.79 0.21
f 2

1 0.27 0.73
b) Independent

entropy objective, we have optimal strategies characterized in terms of computed

operating points. For the independent case, the optimal operating points computed

using the MATLAB function fmincon are u1∗ = 0.511, u2∗ = 0.494. Agent 1 is more

accurate, and thus seeks to include more probability in its search area. The expected

one-stage reduction in differential entropy for this case is 0.54 bits. For the correlated

case, the joint operating point is u11∗ = 0.288, u10∗ = 0.25, u01∗ = 0.25, u00∗ = 0.212,

with expected differential entropy reduction of 0.58 bits per stage. The correlated

channel case leads to greater reduction in differential entropy, as the agents exploit

the correlation in the signal to enhance information extraction. When compared

with the optimal strategies for independent agents, the correlated agents increase the

probability of the overlap area (u11∗ vs. u1∗× u2∗) where both agents query as to the

presence of the object.

The optimal strategies at each stage n, based on pn−1(x), are to find regions

A1
n, A

2
n ⊂ [0, 1]2 so that ∫

x∈A1
n∩A2

n

pn−1(x)dx = u11∗

∫
x∈(A1

n)c∩A2
n

pn−1(x)dx = u01∗

∫
x∈A1

n∩(A2
n)c

pn−1(x)dx = u10∗
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∫
x∈(A1

n)c∩(A2
n)c

pn−1(x)dx = u00∗

Note that there are many sensing strategies that will satisfy the above equalities. We

exploit this degree of freedom to select sensing strategies that can be implemented

by agents with field of view constraints, and that aim to reduce mean squared error

as well as achieving optimal reduction in differential entropy. Thus, we choose our

subsets to be rectangular intervals, so that agents will observe connected regions.

In addition, we choose our sensing strategies to alternate between partitions of the

x-axis at odd times n, and partitions of the y-axis at even times n, dividing each

axis into intervals with probabilities corresponding to u10∗, u11∗, u01∗, u00∗, and then

we aggregate the appropriate regions to compute the sensing areas A1
n, A

2
n. This

construction is illustrated in Figure 6·4. By alternating between axes for partition

at different times, we ensure that the errors in both dimensions are reduced as the

differential entropy decreases.

Figure 6·4: Partition of a line segment into four disjoint subsets at
each stage.

For each of the agent measurement models, we conducted 2000 Monte Carlo exper-

iments. In each experiment, we randomly generate a object position X ∈ X = [0, 1]2

using a uniform distribution. We initialize our prior density for X, p0(x), as a uniform

distribution; therefore, the initial differential entropy H(p0) = −
∫ 1

0

∫ 1

0
log2 1dx dy =

0. At each stage n > 0, given the density pn−1(x), sensing areas A1
n, A

2
n are selected,

and random measurements (y1
n, y

2
n) are generated according to the agent error mod-
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els. These measurements are used to update the conditional density from pn−1(x) to

pn(x) as indicated in (6.2). We continue this process until n = 20 sensing stages are

completed.

For each experiment, we plot the average differential entropy H(pn) and the av-

erage mean-square error as a function of n. Figure 6·5(a) contains the average dif-

ferential entropy results for both the correlated and independent measurement error

models. As expected, the average differential entropy for the correlated case decays

faster than that for the independent case as the number of stages increases. Figure

6·5(b) contains the graph of the mean squared error of the estimated object location

as a function of the number of stages, as well as the lower bounds on the errors.

We note the near-equivalence of the mean squared error in both cases, leading to

an exponential decay as a function of the number of stages. This suggests that an

exponentially decaying upper bound may be possible for these algorithms, although

no such bound has been established in the literature.

The second set of experiments consists of 3 agents searching for an object in

X = [0, 1]. Each agent has observations taking 3 possible values. The sensing areas

at stage n are denoted as A1
n, A2

n and A3
n respectively. We assume that agent 3 has

two choices of precision modes. The agent error models are shown in Table 6.2. For

agent 3, the cost of mode 1 is W 3(1) = 0, whereas the cost of mode 2 is W 3(2) = 0.07,

with the relative weight parameter γ set to 1.

Table 6.2: The error models for three Boolean agents

y = 0 y = 1 y = 2
f1

0 (y) 0.3 0.5 0.2
f1

1 (y) 0.2 0.5 0.3
f2

0 (y) 0.7 0.2 0.1
f2

1 (y) 0.2 0.7 0.1

f3,1
0 (y) 0.3 0.1 0.6

f3,1
1 (y) 0.3 0.6 0.1

f3,2
0 (y) 0.2 0.1 0.7

f3,2
1 (y) 0.2 0.7 0.1
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Note that the error model of each agent for different precision modes satisfies the

symmetry conditions; thus the individual optimal operating points for each agent

are u1∗ = u2∗ = u3∗ = 0.5, for each of the two precision modes of agent 3. By the

results of Theorem 6.3.3, the optimal precision mode for agent 3 must satisfy l3∗ =

arg maxl=1,2G
3(0.5, l). Evaluating for precision mode 1, we have the net information

gain (6.15) is 0.286 and cost is zero, whereas the net information gain under precision

mode 2 is 0.365 with a cost of 0.07. Thus l3∗ = 2 is the optimal precision mode.

To find regions A1
n, A2

n and A3
n, we first select {Bi3i2i1

n : i1, i2, i3 ∈ {0, 1}} as in

Figure 6·6 such that ∫
B
i3i2i1
n

pn−1(x)dx =
1

8
, i1, i2, i3 ∈ {0, 1}

We do so by partitioning the unit interval into regions with equal probability mass,

as illustrated in Figure 6·6. The resulting sensing regions are A1
n = B001

n ∪ B011
n ∪

B101
n ∪B111

n ; A2
n = B010

n ∪B011
n ∪B110

n ∪B111
n ; A3

n = B100
n ∪B101

n ∪B110
n ∪B111

n .

We conduct 5000 Monte Carlo experiments under the optimal joint sensing policy

for three Boolean agents, randomly selecting the initial position X ∈ X = [0, 1]

uniformly. At each stage n > 0, we select the sensing areas A1
n, A2

n and A3
n based

on the current information state pn−1(x) and the optimal joint operating point u∗ as

above. The noisy measurements (y1
n, y

2
n, y

3
n) are randomly generated according to the

agent error models, and will be used to update the conditional density from pn−1(x)

to pn(x). The process continues until n = 20 sensing stages are complete. The net

reduction in differential entropy per time using agent 1, agent 2 and the second mode

of agent 3 is 0.592 bits, so the differential entropy decays linearly at that slope. The

empirical mean squared error and the lower bound at each stage are shown in Figure

6·7. The mean squared error shows the exponential decay we expect.
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6.5.2 Experiments for Multiple Objects

In this section, we illustrate the performance of our search strategies using two agents

to search for two objects in X = [0, 1]. Table 6.3 contains the details of the agent

measurement error models. The measurements Y are binary. The second agent has

less noisy measurements.

Table 6.3: The specifications of two agents. For such agent measure-
ment error models, u∗11 = u∗10 = u∗01 = u∗00 = 1

4
.

y = 0 y = 1
f 1

0 (y) 0.7 0.3
f 1

1 (y) 0.3 0.7
f 2

0 (y) 0.8 0.2
f 2

1 (y) 0.2 0.8

The optimal joint operating point is u∗ = (1/4, 1/4, 1/4, 1/4). At each time step

n, given pn−1(x1, x2), we select intervals A1
n = [a1, b1] and A2

n = [a2, b2]. Since we can

always pick a1 = 0, we only have to determine three values at each stage, namely b2,

b1, and a2. They must satisfy three equalities∫
[b2,1]×[b2,1]

pn−1(x1, x2)dx1dx2 =
1

4∫
[b1,1]×[b1,1]

pn−1(x1, x2)dx1dx2 =
1

4∫
[0,a2]×[0,a2]

pn−1(x1, x2)dx1dx2

+

∫
[b2,1]×[0,a2]

pn−1(x1, x2)dx1dx2

+

∫
[0,a2]×[b2,1]

pn−1(x1, x2)dx1dx2 =
1

4

The construction is illustrated in Figure 6·3.

We compare the optimal policy with a heuristic policy based on spatial partitions.
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In the heuristic policy, the first agent is restricted to searching intervals Ã1
n = [0, b̃1]

that start at the beginning of X = [0, 1], and the second agent is restricted to intervals

Ã2
n = [ã2, 1] that end at the high end of X = [0, 1]. The values of b̃1 and ã2 need to

satisfy

1∫
b̃1

1∫
b̃1

pn−1(x1, x2)dx1dx2 =
1

2

ã2∫
0

ã2∫
0

pn−1(x1, x2)dx1dx2 =
1

2

which are the optimal decisions for single-agent search. Thus, there is no coordination

of interval selections among the two agents; instead, the coordination is that each

agent will focus on different spatial regimes.

For both the optimal policy and the heuristic policy, we conduct 100 Monte Carlo

experiments. In each experiment, we independently generate two object positions

X1, X2 ∈ X = [0, 1] from a uniform distribution. We initialize the prior density

of (X1, X2), i.e. p0(x1, x2), to be uniform over Ω = [0, 1]2; therefore, the initial

differential entropy is H(p0) = −
∫ 1

0

∫ 1

0
log2(1)dx1dx2 = 0. At each time step n, given

pn−1(x1, x2), we select An = (A1
n, A

2
n) based on the optimal policy and Ãn = (Ã1

n, Ã
2
n)

based on the heuristic policy, and generate the corresponding measurements (y1
n, y

1
n)

and (ỹ1
n, ỹ

2
n) respectively. Then we update the conditional density from pn−1 to pn

and compute the posterior differential entropy H(pn). The process continues until

n = 20 sensing stages are complete.

We compute the differential entropy of the conditional probability density of the

object locations at each stage of the 100 sample experiments, for using both the

optimal policy and the heuristic policy. The average entropy paths are plotted in

Figure 6·8. The trajectory for the optimal policy is shown in black solid line with

circle points, while the trajectory for the heuristic is shown in blue dash-dotted line
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with diamond points. We also include the theoretical benchmark, computed from

Theorem 6.4.2, shown in the black straight dashed line. It is clear that the average

differential entropy path under the optimal policy decays linearly as predicted, close

to the theoretical benchmark, and faster than that under the heuristic policy.



154

(a) Differential entropy of optimal sensing strategies.

(b) Mean squared error of optimal sensing strategies.

Figure 6·5: Results with correlated and independent error models
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Figure 6·6: Partition of a line segment into 23 = 8 disjoint subsets at
each stage.

Figure 6·7: The average mean squared error for three-agent joint
search under the optimal joint sensing policy, as a function of time.
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Figure 6·8: The posterior entropy reduction paths for the optimal
policy, the heuristic and the theoretic optimal benchmark.
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Chapter 7

Conclusions

7.1 Summary of the Thesis

In Chapter 3, we investigated the problem of sparse multi-agent discrete search with-

out false alarms. The agents have limited visibility, i.e., each agent can only search a

subset of the locations. For the special case where the agents are homogeneous and

thus the detection performance only depends on the location, we provided a novel

perspective of viewing the problem as a min-cost flow problem, and gave the optimal-

ity conditions for the agent allocation to be optimal. We developed a fast specialized

algorithm for solving the problem. The algorithm uses a heap to create one unit of

demand at a sink node at each iteration, then finds an augmenting path to assign the

demand. When it fails to do so, we identify and remove an isolated group of nodes

from further consideration. We proved that the algorithm can always find an opti-

mal solution in finite time, and analyzed the time complexity of the algorithm. We

performed experiments to compare our specialized algorithm with a general min-cost

flow algorithm, the capacity-scaling algorithm.

We also addressed the general case where the agents are heterogeneous and thus

the detection performance depends on both location and agent, which is known to be

NP-hard. We showed that the problem can be reduced to a submodular maximization

problem over a matroid. We developed an approximate algorithm with guaranteed

performance and a block coordinate ascent algorithm. We also provided an upper

bound of the optimal value.
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In Chapter 4, we studied the problem of multi-agent sparse search of a moving

object. The motion of the object follows a time-homogeneous Markov chain with

known transition probability matrix. Similar as in Chapter 3, the agents have limited

visibility. The agents only have discrete search efforts, resulting in an integer problem.

We provided necessary conditions for an optimal search plan. We developed a

forward-and-backward (FAB) algorithm which is a block coordinate descent algo-

rithm, and illustrated with counterexample that it does not always find an optimal

solution. We then developed a two-stage FAB algorithm. The first stage of the algo-

rithm focuses on a relaxed problem that allows continuous search effort, in prepara-

tion for initializing the second stage which focuses on the integer problem. We proved

that the first stage of the algorithm converges to an optimal solution of the relaxed

problem.

In experiments, we used the RS algorithm in [Royset and Sato, 2010] to compute

the relative optimality gaps achieved by our two-stage FAB algorithm. Our algorithm

found solutions of less than 5% relative optimality gap for models of size 3 agents,

225 locations and 10 time periods in a few seconds. Experiments also showed that

the two-stage FAB algorithm finds better objective values than its three variants. It

scales well as the problem size grows too.

We provided fast specialized algorithms to solve the subproblems in the two-stage

FAB algorithm. Our algorithm for solving the integer subproblems is a specialized

primal-dual algorithm. It has a time complexity much smaller than general min-cost

flow problems. Our algorithm for solving the relaxed subproblems is based on the

block coordinate descent method. Experiments showed that it is orders of magnitude

faster than general constrained nonlinear optimization algorithms.

We also generalized the problem to the case of multiple heterogeneous agents

where the probabilities of detection do not only depend on the locations and the
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time periods, but also on the agents. We formulated the problem as maximizing a

monotone submodular set function over matroid constraints. We proposed two greedy

algorithms and prove that a greedy-style algorithm has an approximation ratio of 1
2
.

We also provided a lower bound of the optimal objective value.

In Chapter 5, we presented a new class of fast algorithms for solving budget and

motion constrained search posed as orienteering problems. The algorithms are based

on using approximate algorithms for task assignment based on knapsack problems,

while using estimates of required resources based on spanning tree information as a

surrogate for required tour distances. We subsequently refined the tours and task

assignments using traveling salesperson approximations such as the Lin-Kernighan-

Helsgaun algorithm. We first developed algorithms for single agent problems, then

developed extensions for teams of agents.

We conducted extensive numerical experiments comparing our algorithms with

other proposed fast algorithms for orienteering problems on benchmark problems

as well as on a physical scenario derived from LANDSAT data. Our results indicate

that our new algorithms have stable computation times across multiple scenarios, and

achieve collected rewards that are significantly higher than the competing algorithms

across most scenarios tested.

In Chapter 6, we studied the problem of optimal adaptive search by a team of

agents collecting noisy observations concerning the presence of an object in observed

areas. Our results extend the prior work of [Jedynak et al., 2011] by considering

teams of agents with correlated measurement errors. We established an equivalence

between the correlated error multi-agent problem and a single-agent, multi-region

problem, and exploited this equivalence to derive an explicit solution for the optimal

value function and the optimal strategies. The optimal strategies are characterized

by a unique, optimal joint operating point, which can be obtained as the solution of
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a strictly concave maximization problem.

When agent errors are independent across agents, the concave maximization prob-

lem for the optimal joint operating point can be decoupled into individual scalar

concave maximization problems, leading to a simple computational procedure for its

solution. We established sufficient conditions for characterizing symmetry proper-

ties of general error models that allow for the analytic solution for the optimal joint

operating point.

We extended our multi-agent formulation with independent errors to the case

where agents can choose between different precision modes as well as observation

regions, at a cost that depends on the precision mode selected, extending the single

agent results in [Sznitman et al., 2013]. The optimal strategies are again characterized

by an optimal joint operating point and set of optimal joint precision modes. We

showed that computing the optimal joint operating point mode and precision modes

again decouples into single-agent scalar concave maximization problems.

We further studied the case where there are multiple objects to search. We derived

an explicit solution to Bellmans equation for the cost-to-go, as well as a construction

for the optimal strategies that involved solution of a strictly convex minimization

problem. The resulting optimal control policies were evaluated in simulations in-

volving two objects and two agents, which illustrated that the expected empirical

cost-to-go agreed closely with the theoretical prediction from the solution of Bell-

mans equation. We compared this empirical cost with the cost of a heuristic based

on geographic partitioning, and found that the optimal strategies had significant im-

provement in performance.



161

7.2 Directions for Future Work

There are several directions in which the results in Chapter 3 can be extended. One

direction is to study multi-agent whereabouts search without false alarms where the

objective is to find an optimal agent allocation to maximize the probability of correctly

stating where the object is. A second direction is to consider when one search action

of different agents cost different amounts of effort. Optimal strategies may not exist

for this problem; techniques such as branch and bound may be needed. A third

direction is to extend to cases where false alarm measurements are possible.

There are several directions to extend the problem studied in Chapter 4. One

direction is to consider searching for multiple objects. Possible objectives for this

problem include maximizing the number of objects detected over a fixed horizon. A

second direction is to consider both agent motion constraints where each agent is

constrained to moving to a subset of locations depending on its present location and

agent visibilities. In this case, one needs to carefully construct feasible search plans

that satisfy the motion constraints. A third direction is to extend to cases where false

alarm measurements are possible.

There are several directions to enhance the algorithms developed in Chapter 5. In

particular, for the team orienteering problem, one may come up with different ways

to initialize trees for the agents. One may also consider using other approaches to

select nodes to visit in the tours other than greedily growing trees.

There are several directions in which the results in Chapter 6 can be extended.

One direction is to develop upper bounds on the mean squared error for selected

optimal algorithms. To the best of our knowledge, the only upper bound on the

expected error was developed in [Waeber et al., 2011] for the case of single-agent

search of an object in a unit interval with binary symmetric errors using Horstein’s

probabilistic bisection algorithm [Horstein, 1963]. One may consider generalizing the
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result in [Waeber et al., 2011] to single or multiple agents with general measurement

error models. A second extension is to develop approaches for approximating the

optimal search strategies when agents consist of physical platforms with sensing area

constraints; similar issues arise in the results in classical search theory [Stone, 1975].

Another possible extension is to consider single or multiple moving objects.
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