Sevenler, DerinAvci, OguzhanUnlu, M. Selim2019-09-062019-09-062017-06-01Derin Sevenler, Oguzhan Avci, M Selim Unlu. 2017. "Quantitative interferometric reflectance imaging for the detection and measurement of biological nanoparticles." BIOMEDICAL OPTICS EXPRESS, Volume 8, Issue 6, pp. 2976 - 2989 (14). https://doi.org/10.1364/BOE.8.0029762156-7085https://hdl.handle.net/2144/37745The sensitive detection and quantitative measurement of biological nanoparticles such as viruses or exosomes is of growing importance in biology and medicine since these structures are implicated in many biological processes and diseases. Interferometric reflectance imaging is a label-free optical biosensing method which can directly detect individual biological nanoparticles when they are immobilized onto a protein microarray. Previous efforts to infer bio-nanoparticle size and shape have relied on empirical calibration using a ‘ruler’ of particle samples of known size, which was inconsistent and qualitative. Here, we present a mechanistic physical explanation and experimental approach by which interferometric reflectance imaging may be used to not only detect but also quantitatively measure bio-nanoparticle size and shape. We introduce a comprehensive optical model that can quantitatively simulate the scattering of arbitrarily-shaped nanoparticles such as rod-shaped or filamentous virions. Finally, we optimize the optical design for the detection and quantitative measurement of small and low-index bio-nanoparticles immersed in water.p. 2976 - 2989en-USScience & technologyLife sciences & biomedicinePhysical sciencesBiochemical research methodsOpticsRadiology, nuclear medicine & medical imagingBiochemistry & molecular biologyHuman-immunodeficiency-virusLabel-free detectionSingle nanoparticlesExtracellular vesiclesField interferometryHigh-throughputExosomesMicroscopyMorphologyMicroparticlesInterferometric imagingBiological sensing and sensorsScattering, particlesThin film devices and applicationsQuantitative interferometric reflectance imaging for the detection and measurement of biological nanoparticlesArticle10.1364/BOE.8.0029760000-0002-8594-892X (Unlu, M Selim)239432