Levy-Leduc, CelineBoistard, HeleneMoulines, EricTaqqu, Murad S.Reisen, Valderio A.2018-10-192018-10-192011-06-01C Levy-Leduc, H Boistard, E Moulines, MS Taqqu, VA Reisen. 2011. "ASYMPTOTIC PROPERTIES OF U-PROCESSES UNDER LONG-RANGE DEPENDENCE." ANNALS OF STATISTICS, v. 39, Issue 3, pp. 1399 - 1426 (28). https://doi.org/10.1214/10-AOS8670090-5364https://hdl.handle.net/2144/31481Let (Xi)i≥1 be a stationary mean-zero Gaussian process with covariances $\rho(k)=\mathbb {E}(X_{1}X_{k+1})$ satisfying ρ(0) = 1 and ρ(k) = k−DL(k), where D is in (0, 1), and L is slowly varying at infinity. Consider the U-process {Un(r), r ∈ I} defined as Un(r) = 1/n(n−1) ∑1≤i≠j≤n1{G(Xi, Xj)≤r}, where I is an interval included in ℝ, and G is a symmetric function. In this paper, we provide central and noncentral limit theorems for Un. They are used to derive, in the long-range dependence setting, new properties of many well-known estimators such as the Hodges–Lehmann estimator, which is a well-known robust location estimator, the Wilcoxon-signed rank statistic, the sample correlation integral and an associated robust scale estimator. These robust estimators are shown to have the same asymptotic distribution as the classical location and scale estimators. The limiting distributions are expressed through multiple Wiener–Itô integrals.p. 1399-1426MathematicsLong-range dependenceU-processHodges-Lehmann estimatorWilcoxon-signed rank testScience & technologyPhysical sciencesStatistics & probabilitySample correlation integralStatisticsEstimatorsSequencesLocationEconometricsAsymptotic properties of U-processes under long-range dependenceArticle10.1214/10-AOS8670000-0002-1145-9082 (Taqqu, MS)