
Boston University

OpenBU http://open.bu.edu

Boston University Theses & Dissertations Boston University Theses & Dissertations

2021

Intelligent middleware for HPC systems

to improve performance and energy cost efficiency

https://hdl.handle.net/2144/41893

Downloaded from DSpace Repository, DSpace Institution's institutional repository

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

INTELLIGENT MIDDLEWARE FOR HPC SYSTEMS TO

IMPROVE PERFORMANCE AND ENERGY COST

EFFICIENCY

by

YIJIA ZHANG

B.S., Peking University, China, 2015

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2021

© 2021 by
YIJIA ZHANG
All rights reserved

Approved by

First Reader

Ayse K. Coskun, PhD
Associate Professor of Electrical and Computer Engineering

Second Reader

Ioannis Ch. Paschalidis, PhD
Professor of Electrical and Computer Engineering
Professor of Systems Engineering
Professor of Biomedical Engineering

Third Reader

Martin Herbordt, PhD
Professor of Electrical and Computer Engineering

Fourth Reader

Vitus J. Leung, PhD
Principal Member of Technical Staff
Sandia National Laboratories

Wir müssen wissen.
spaceWir werden wissen. – David Hilbert (1930)

iv

Acknowledgments

First, I would like to express my gratitude to my advisor, Prof. Ayse Coskun. This

work would not have been possible without her guidance and help. I am also thankful

to Prof. Ioannis Paschalidis, who advised me and provided substantial guidance to my

research. I also appreciate the help from Prof. Martin Herbordt, Dr. Vitus J. Leung,

Prof. Manuel Egele, Prof. Katzalin Olcoz, and Jim Brandt for their guidance in the

HPC monitoring and resource management project. I thank Dr. Taylor Groves for

providing me internship opportunity at the Lawrence Berkeley National Laboratory,

which led to a joint work between the Berkeley Lab and BU.

It goes without saying, without the support of my parents, Binquan Zhang and

Guorong Wang, this dissertation would not have been possible.

I also want to thank my collaborators, Hao Chen, Ozan Tuncer, Ata Turk, Fulya

Kaplan, Daniel C. Wilson, Emre Ates, Burak Aksar, and Athanasios Tsiligkaridis.

Owing to their collaboration, I was able to finish my projects and publish them in

the past few years. I would like to thank Boston University and Sandia National

Laboratories for funding most of my research. I also appreciate my colleagues in our

research group: Onur, Tiansheng, Aditya, Zihao, Prachi, Mert, and Anthony. I will

never forget the life with them, all the sharing and all the happiness. This goes to

the ICSG and CAAD labs at BU as well.

Some contents in Chapter 2 are reprints of the material from the following paper:

• Yijia Zhang, Ioannis Ch. Paschalidis, and Ayse K. Coskun. Data Center Par-

ticipation in Demand Response Programs with Quality-of-Service Guarantees.

In ACM International Conference on Future Energy Systems (e-Energy), pp.

285-302, Jun. 2019.

Some contents in Chapter 3 are reprints of the material from the following papers:

v

• Yijia Zhang, Ozan Tuncer, Fulya Kaplan, Katzalin Olcoz, Vitus J. Leung, and

Ayse K. Coskun. Level-Spread: A New Job Allocation Policy for Dragonfly

Networks. In Proceedings of IEEE International Parallel and Distributed Pro-

cessing Symposium (IPDPS), pp. 1123-1132, May. 2018.

• Yijia Zhang, Taylor Groves, Brandon Cook, Nicholas J. Wright, and Ayse K.

Coskun. Quantifying the impact of network congestion on application per-

formance and network metrics. In IEEE International Conference on Cluster

Computing (Cluster), pp. 162-168, Sept. 2020.

vi

INTELLIGENT MIDDLEWARE FOR HPC SYSTEMS TO

IMPROVE PERFORMANCE AND ENERGY COST

EFFICIENCY

YIJIA ZHANG

Boston University, College of Engineering, 2021

Major Professor: Ayse K. Coskun, PhD
Associate Professor of Electrical and Computer
Engineering

ABSTRACT

High-performance computing (HPC) systems play an essential role in large-scale sci-

entific computations. As the number of nodes in HPC systems continues to increase,

their power consumption leads to larger energy costs. The energy costs pose a fi-

nancial burden on maintaining HPC systems, which will be more challenging on

future extreme-scale systems where the number of nodes and power consumption

are expected to further grow. To support this growth, higher degrees of network

and memory resource sharing are implemented, causing a substantial increase in per-

formance variation and degradation. These challenges call for innovations in HPC

system middleware that reduce energy cost without trading off performance.

By taking the performance of an HPC system as a first-order constraint, this

thesis establishes that HPC systems can participate in demand response programs

while providing performance guarantees through a novel design of the middleware.

Well-designed middleware also enables enhanced performance by mitigating resource

contention induced by energy or cost restrictions. This thesis aims to realize these

vii

goals through two complementary approaches.

First, this thesis proposes novel policies for HPC systems to enable their participa-

tion in emerging power markets, where participants reduce their energy costs by fol-

lowing market requirements. Our policies guarantee that the Quality-of-Service (QoS)

of jobs does not drop below given constraints and systematically optimize cost reduc-

tion based on large deviation analysis in queueing theory. Through experiments on

a real-world cluster whose power consumption is regulated to follow a dynamically

changing power target, this thesis claims that HPC systems can participate in emerg-

ing power programs without violating the QoS constraints of jobs.

Second, this thesis proposes novel resource management strategies to improve the

performance of HPC systems. Better resource management can mitigate contention

that causes performance degradation and poor system utilization. To resolve network

contention, we design an intelligent job allocation policy for HPC systems that incor-

porate the state-of-the-art dragonfly network topology. Our allocation policy miti-

gates network contention, reduces network communication latency, and consequently

improves the performance of the systems. As some latest HPC systems support the

collection of high-granularity network performance metrics at runtime, we also pro-

pose a method to quantify the impact of network congestion and demonstrate that

a network-data-driven job allocation policy improves HPC performance by avoiding

network traffic hot spots.

viii

Contents

1 Introduction 1

1.1 Motivation and Key Contributions 1

1.2 Related Work . 5

1.2.1 HPC System Demand Response Participation 5

1.2.2 HPC Job Allocation and Network Contention 7

2 Data Center Participation in Demand Response with QoS Assur-
ance 10

2.1 Introduction . 10

2.2 Background on Demand Response and Regulation Service Reserves . 13

2.3 Data Center and Workload Model . 15

2.4 The QoS-Guarantee (QoSG) policy 18

2.4.1 An Overview of QoSG Policy 18

2.4.2 Generalized Processor Sharing (GPS) Algorithm 20

2.4.3 Generalization of a Theorem Quantifying Delay in GPS algorithm 20

2.4.4 Our QoSG Policy at Runtime 25

2.4.5 Determining the Optimal P̄ , R and wj 27

2.4.6 Additional Methods to Regulate Power 37

2.5 Simulation and MOC Experiments of QoSG policy 39

2.5.1 Simulation and Experiments Setup 39

2.5.2 Evaluation with the Default Setting 42

2.5.3 Comparison of Different Settings 48

ix

2.6 The Adaptive QoS-Assurance (AQA) policy 53

2.6.1 An Overview of the AQA Policy 55

2.6.2 Job Scheduling and Power Capping in AQA 56

2.6.3 Bidding and Weight Parameter Selection in AQA 59

2.7 Experiments of AQA policy on MGHPCC Servers 66

2.7.1 System Setup . 67

2.7.2 Workload Profile . 69

2.7.3 Baseline Policies . 72

2.7.4 36-server Real-System Experiments 72

2.7.5 Comparison of 14 Workload Traces 76

2.7.6 AQA with Standby Jobs . 80

2.7.7 AQA with Job Preemption . 80

2.7.8 Comparison of different QoS constraint levels 81

2.7.9 Scalability to large data centers 83

2.8 QoSCap Power Management Policy and Adaptive Bidding Policy . . 84

2.8.1 Power Management Policies 85

2.8.2 Bidding Policies . 86

2.9 Simulation Results of QoSCap and Adaptive Bidding Policies Using

Real Workload Traces . 89

2.9.1 Workload Traces . 89

2.9.2 Simulator Setup . 92

2.9.3 Simulation Results . 92

3 Mitigating Network Congestion and Improving Performance through
Novel Job Allocation Strategies 96

3.1 Introduction . 96

3.2 Level-Spread Allocation Policy . 97

x

3.2.1 Motivational Experiment . 99

3.2.2 Level-Spread Allocation Policy 101

3.3 Simulation Methodology . 103

3.3.1 Structural Simulation Toolkit (SST) 103

3.3.2 Simulated Environments . 104

3.3.3 Parallel Workloads . 104

3.3.4 Baseline Allocation Policies 107

3.4 Simulation Results for Level-Spread Policy 108

3.4.1 Homogeneous Workloads . 109

3.4.2 Heterogeneous Workloads . 113

3.4.3 Impact of Communication Intensity 115

3.4.4 Mixed Job Sizes and Communication Patterns 116

3.4.5 Influence of Scheduling on the Level-Spread Policy 118

3.4.6 Comparison with Jokanovic’s Allocation Policy 120

3.5 Quantifying Network Congestion Using Hardware Performance Counters121

3.5.1 Aries Network Router . 122

3.5.2 Network Metrics . 123

3.6 Experiments for Quantifying Network Congestion 124

3.6.1 Design of Experiments . 124

3.6.2 Impact of Network Congestion on Applications 129

3.6.3 Correlating Network Metrics with Application Performance . . 135

3.6.4 Correlating Network Metrics with Network Congestors 137

3.7 A Network-Data-Driven (NeDD) Job Allocation Policy 137

3.8 Evaluting the NeDD Policy on Large HPC Systems 139

3.8.1 Experimental Design . 139

3.8.2 Experimental Results . 141

xi

4 Conclusions and Future Work 144

4.1 HPC System Demand Response Participation 144

4.2 Mitigating HPC Network Contention through Job Allocation 146

References 149

Curriculum Vitae 160

xii

List of Tables

2.1 Variables Used in the Problem Formulation 21

2.2 Characteristics of benchmark applications. 39

2.3 Thresholds Qj
thres in the QoS constraints of jobs. 43

2.4 Applications and workloads used in evaluation. The meaning of ap-

plication name is shown by this example: bt.C.16 means running

benchmark bt with input C and with 16 threads. Here, mj is the size

(number of servers used to run). Tmin (Tmax) is the minimum (maxi-

mum) processing time in seconds and pmax (pmin) is the corresponding

power consumption of a server in Watts. 68

2.5 Workload trace properties. 70

2.6 Experiments with 14 workload traces using the AQA policy. 77

2.7 Simulation results of applying different policies for data center partici-

pation in regulation service. The proposed policy combination QoSCap

+ Adaptive is in bold. The “Tracking Error” column shows the per-

centage of large tracking error, and a value larger than 10% violates

the tracking constraint. “QoS Degrad.” column shows the largest aver-

age QoS degradation among all job types, and a value larger than 2.0

violates the QoS constraints. Values violating constraints are shown in

red, otherwise in green. The electricity cost for policies that meet all

constraints are displayed. 95

3.1 Configurations of simulated dragonfly machines. 103

xiii

3.2 Parallel workloads in our experiments. 105

3.3 Aries network counters used in this work (Cray Inc., 2018). 124

3.4 Application MPI profiles collected by CrayPat. “MPI Operation” shows

the percentage of execution time spent on MPI operations, and the

MPI call breakdown is shown in other columns. “MPI_(other)” is

the sum of other MPI calls not specified here. Applications with

more time spent on MPI operations, especially MPI collective opera-

tions (MPI_Allreduce, MPI_Bcast, MPI_Barrier, etc.), are impacted

more by network congestion than applications with less intensive MPI

operations. 131

3.5 Execution time, aggregate data transfer rate, average message size, and

MPI call counts collected by CrayPat. Columns starting with “MPI_”

are breakdown of “MPI Call”. Non-dominant MPI call types are not

listed. “Exec Time” is the median of the 10 runs in Setting I. “Agg

Data Trans Rate” shows the aggregate bytes of data transferred per

second. 132

xiv

List of Figures

2·1 Our data center model. Jobs are grouped into different types and each

type is processed in a separate queue. Servers are conceptually (not

physically) grouped into an idle-server group and several active-server

groups. Servers in the jth active group run the jth-type jobs. The total

number of active servers n(t) is adjusted to track the power target. . 17

2·2 Real-system implementation architecture. 37

2·3 Experiments on a real 12-server cluster using our QoSG policy. 42

2·4 Simulation results for a 100-server data center participating in demand

response using our QoSG policy. The actual power consumption (blue)

of the data center follows the target power (red) closely, with a 4.3%

average tracking error. 43

2·5 CDFs of tracking error in simulation with the default setting. 44

2·6 Cumulative distribution functions of the QoS degradation of each type

of jobs in simulation. This simulation uses the default setting with

100 servers. The green dashed lines are the thresholds in the QoS

constraints in Eq. (2.5) and Table 2.3. Our QoSG policy guarantees

that all job types meet their constraints. The Tracking-only policy and

the EnergyQARE policy violate the QoS constraints in this case. . . . 45

xv

2·7 Power-time curves of the simulations using the two baseline policies

with the default setting. The Tracking-only policy provides good track-

ing performance, with an average tracking error of 2.4%. The Ener-

gyQARE policy consumes more power than the target at some places

(e.g., t = 1300) in order to reduce the QoS degradation of the jobs.

Therefore, EnergyQARE leads to smaller number of jobs waiting in

the queues, at the cost of larger tracking error than Tracking-only. . . 46

2·8 CDFs of tracking error in real experiments with the default setting. . 47

2·9 Cumulative distribution functions of the QoS degradation of each type

of jobs in a real-system experiment with 12 servers. Our QoSG policy

guarantees that all job types meet their constraints; meanwhile, the

baseline policies cannot. 48

2·10 Power-time curves of the real-system experiments using the two base-

line policies with the default setting. 49

2·11 Results for different data center sizes. 49

2·12 Results for different QoS constraint levels. 50

2·13 Power-time curves for simulations using our QoSG policy at different

data center utilization levels. Our policy selects different optimal values

for P̄ and R according the utilization level. 51

2·14 Results for different data center utilization levels. 52

2·15 Optimal weights wj in traces W1, W2, W3. 52

2·16 Comparing workloads of different compositions. 53

xvi

2·17 Results using different one-hour samples of the ISO signal. These re-

sults demonstrate that our result is robust to the behavior of ISO

signal. In all these simulations, the average tracking error is less than

7%. Our QoSG policy meets the tracking error constraint and the job

QoS constraints. 54

2·18 The runtime part and the parameter selection part of our AQA policy. 55

2·19 The two components of our AQA policy. 57

2·20 Simplified flow chart illustrating the two baseline policies. EnergyQARE

(Chen et al., 2019) or Tracking-only policy (Chen et al., 2014) corre-

sponds to the chart with or without the pink region, respectively. . . 70

2·21 Experiments on a real 36-server cluster running workload W4 using

our AQA policy. 71

2·22 Experiments on a real 36-server cluster running workload W4 using

the EnergyQARE policy. 73

2·23 The cumulative distribution functions (CDF) of all 8 applications’ QoS

degradation when running workload W4 in real-system experiments

with three different policies. Both the EnergyQARE and the Tracking-

only policies cannot meet the QoS constraints of application is.D.64,

as shown in (g). On the other hand, our QoSG policy can meet that

application’s QoS constraint by giving it a large weight as shown in

Fig. 2·25. In these CDF curves, the solid vertical line shows where the

curves reach 100%. 74

2·24 The cumulative distribution functions (CDF) of tracking error accord-

ing to the three policies. 75

2·25 Weights adjusted by gradient-descent optimization. 76

xvii

2·26 The cumulative distribution functions of QoS degradation when run-

ning W13 with AQA or EnergyQARE. 78

2·27 Experiments on a real 36-server cluster running workload trace W3

using our AQA policy. 79

2·28 Evaluating AQA policy with/without job preemption by simulation

using workload trace W5. 81

2·29 Comparing results from workload W4 with either a medium or a tight

QoS constraint level. 82

2·30 Evaluating QoSG policy by simulating a 10k-node data center with a

job-size-scaled version of W1 workload. 82

2·31 Power management policies regulate data center power through job

scheduling and power-capping to match the actual power consumption

with the target power. 85

2·32 Bidding policies select the appropriate P̄ ,R parameters that determine

the average and the variation of the target power. 87

2·33 The logged power and execution time of jobs running on the meggie

cluster in February 1-8, 2019. 90

2·34 Simulating a data center participating in regulation reserve programs

when applying our policies. The simulations use real server parame-

ters and run workload traces taken from a real 728-node cluster called

meggie. In (c) and (d), the QoSCap with Adaptive Bidding policy en-

ables the data center to match its actual power (blue) with the target

power (red) and meet the QoS constraints of jobs. 91

xviii

3·1 A group in a dragonfly network. The group is composed of 4 routers

that are connected to each other by local links (green). Each router is

connected to 4 nodes, which are labeled by numbers. The entire drag-

onfly machine (not shown here) consists of a number of such groups.

Between each pair of groups there is a global link (blue) connecting

them together. 98

3·2 We compare random group allocation (RDG), which prioritizes select-

ing nodes from the same group when allocating a parallel job, and

random node allocation (RDN), which selects nodes randomly across

the entire network, and we simulate two different workloads. Workload

1 (small jobs) benefits from RDG, whereas workload 2 (large jobs) ben-

efits from RDN. 100

3·3 Three jobs are allocated to a dragonfly machine (g = 9, a = 4, p = 4)

by Level-Spread. Only four groups are drawn for simplicity. The first

job (orange) is allocated to the nodes connected to a single router. The

second job (green) is allocated to different routers in the same group.

The third job (blue) is spread to all groups in a round-robin manner. 102

3·4 Communication time of homogeneous workloads on a machine with 16

nodes per group, 17 groups in total, at 90% utilization, and using an

application message size of 1 KB. Results are normalized with respect

to the Simple allocation policy. Error bars represent the standard

deviation. Both (a) and (b) shows reduced difference among these

allocations when the global link bandwidth increases relative to the

local link bandwidth. 106

3·5 Packet count and stalls at the output port to global or local links when

running the 16-node-job homogeneous workload. 110

xix

3·6 Packet count and stalls at the output port to global or local links when

running the 64-node-job homogeneous workload. 111

3·7 Communication time of heterogeneous workloads each composed of n

small jobs (16-node) and n large jobs (64-node) with a message size

of 1KB. The number n is determined by the target utilization level of

90%. In each subfigure, a point represents the results from running

the heterogeneous workload using a specific allocation. The X-axis of

the point represents the average communication time of the small jobs,

and the Y-axis represents that of the large jobs. The star corresponds

to the Level-Spread allocation policy; the diamonds correspond to the

grouping-strategy policies; the circles correspond to spreading-strategy

policies. Values are normalized with respect to the Simple allocation

policy in each subfigure. 112

3·8 Varying the communication intensity in terms of message size of the

jobs. Here, we simulate a heterogeneous workload composed of three

16-node jobs and three 64-node jobs on a 272-node machine. We repeat

the simulations with six communication patterns and different message

sizes. From top to bottom, we gradually increase the ratio of commu-

nication intensity between the 16-node jobs and the 64-node jobs. In

the first row, some circles are beyond the range of the X-axis and thus

not displayed. 114

3·9 Counted occurrence of job sizes in the 1000 randomly generated work-

loads used in Sec. 3.4.4. 116

xx

3·10 Results from 1000 randomly generated workloads with mixed job sizes

and communication patterns. Each point represents one allocation

policy in one workload. Values are normalized with respect to Level-

Spread. 117

3·11 In an adverse scheduling decision where the allocation of large jobs

(jobs that cannot fit in a single group) are prioritized, Level-Spread at

least performs as well as the baselines. 119

3·12 Comparing Level-Spread policy with Jokanovic’s policy using 1000 ran-

dom workloads with mixed job sizes and communication patterns. . . 119

3·13 Comparing Level-Spread policy with Jokanovic’s policy using 1000 ran-

dom workloads. Here, large jobs are allocated prior to small jobs. . . 120

3·14 Aries router architecture in a dragonfly network. 122

3·15 The four experimental settings. Each square is a node. Blue squares

run a parallel application. Grey squares run the GPCNeT congestor.

White ones are idle. 126

3·16 To mitigate variations from background traffic, we repeat experiments

with the placement of application/congestor rotationally shifted (first

three shifts for Setting III are drawn). 128

3·17 Normalized application execution time under four experimental set-

tings. Normalization is done separately for each application. Each bar

summarizes the 10 runs for an application. Errorbars are min/max;

edges of box are the first and third quartiles; middle line is the median.

Setting IV of LAMMPS exceeds the range and it is separately drawn

in (b). 129

xxi

3·18 There are positive correlations between ntile stall/flit ratio and appli-

cation execution time. A cross represents the average of 10 runs for

each setting. Errorbars are standard errors. The dashed line is a linear

fit. These positive correlations suggest that ntile stall/flit ratio metric

is indicative of performance degradation caused by network congestion. 133

3·19 There are positive (negative) correlations between ntile (ptile) stalls

per second and application execution time, respectively. The negative

correlations in (c) and (d) imply that ptile-to-node links are not the

bottleneck of the network. 136

3·20 Correlating ntile stall/flit ratio with GPCNeT congestor impact fac-

tor. Different colors represent experiments where we run GPCNeT on

different number of nodes. 138

3·21 The Network-Data-Drive (NeDD) job allocation policy for dragonfly

systems. 139

3·22 The NeDD policy quantifies the network traffic intensity of a router

according to the traffic summed over all nodes linked to the routers. 140

3·23 Our experimental design to evaluate the NeDD policy. 141

3·24 Results comparing different job allocation policies. Errorbars show

the minimum and maximum execution time in the ten runs for each

application. Colored area shows the first and third quartiles. The

dashed black line shows the median, and the red point shows the average.142

xxii

List of Abbreviations

AQA Adaptive Quality-of-Service Assurance
CDF Cumulative Distribution Function
GPS Generalized Processor Sharing
HPC High-Performance Computing
MGHPCC Massachusetts Green High Performance Computing Center
MOC Massachusetts Open Cloud
NeDD Network-Data-Driven
RSRs Regulation Service Reserves
SST Structural Simulation Toolkit
QoS Quality of Service
QoSCap Quality-of-Service-aware-Capping
QoSG Quality-of-Service Guarantee

xxiii

1

Chapter 1

Introduction

1.1 Motivation and Key Contributions

HPC systems are playing an irreplaceable role by offering a substantial amount of

computing services to the society. Many companies and research facilities are relying

on the computing power provided by HPC systems around the world. However, HPC

systems are large power consumers. In 2020, the top supercomputer in the world,

the Fugaku supercomputer, consumed a peak power of 28 MW (TOP500, 2020),

equivalent to more than $100,000 of energy cost per day. It is also reported that, in

2014, all data centers in the US consumed 70 billion kWh, which is close to 2% of US

electricity usage (Shehabi et al., 2016). As the trend of building large HPC systems

is expected to continue, suppressing the increasing energy cost of HPC systems is a

key challenge and vital to sustain their growth (Shehabi et al., 2016).

To support this growth of HPC system size and energy cost, higher degrees of

computer, memory, and network resource sharing are implemented as a tradeoff,

causing performance variation and degradation in these systems. Especially, in many

latest HPC systems, network resource is heavily shared among different jobs, which

results in significant network contention, leading to performance degradation. It has

been widely reported that network congestion on HPC systems is a major cause

of performance degradation (Bhatele et al., 2013a; Smith et al., 2016; Bhatele et al.,

2020), leading to extention of job execution times (e.g., 6X longer than the optimal as

reported in recent work (Chunduri et al., 2017)). These challenges call for innovations

2

in HPC system middleware that mitigate the impact of network contention and reduce

energy cost without trading off performance.

Participation in demand response programs is a profitable and environmentally

beneficial answer to the challenge of HPC energy cost. In this thesis, we focus on

regulation service, which is a specific type of a demand response program (New York

Independent System Operator (NYISO), 2020). In regulation service programs, a

power consumer is asked to regulate its power by following a target signal broadcast

by a grid operator. The power consumer determines the average power value and

the range of the power according to their own regulation capability, but the exact

value of the power target is not known in advance and changes every few seconds.

Participants of regulation service programs benefit from significant electricity cost

reduction as long as they track the target within a small error margin (New York

Independent System Operator (NYISO), 2020).

HPC systems are good candidates to provide regulation service reserves because

many HPC systems are capable of quickly regulating their power usage within a large

range through job scheduling and server power management. Previous works have

demonstrated in simulation that participation in demand response could reduce the

energy cost of HPC systems by 50% (Chen et al., 2014; Chen et al., 2019). However,

those works do not provide quality-of-service (QoS)1 guarantees on jobs running in

HPC systems, which could discourage many potential participants since QoS is one

of their top concerns. Also, prior works have not demonstrated HPC participation in

demand response on real clusters and with real-world workload traces.

In this work, we design novel HPC middleware to meet the challenges discussed

above and evaluate it on real clusters and using real-world workload traces. We

present the thesis statement as following:
1In this work, QoS refers to timely execution of the computational jobs submitted to HPC

systems. In other words, QoS requirement places a constraint on the delay of executing each job.

3

This thesis claims that HPC systems can successfully participate in de-

mand response programs while providing performance guarantees through

a novel design of the middleware. Well-designed middleware also enables

enhanced performance by mitigating resource contention induced by energy

or cost restrictions.

Therefore, we design the following middleware for HPC systems to improve per-

formance and energy cost efficiency:

• Strategies enabling HPC systems to participate in demand response

programs with QoS assurance:

We propose a QoS-Guarantee (QoSG) policy as well as an Adaptive QoS-

Assurance (AQA) policy that enable HPC systems to participate in demand

response with QoS assurance of jobs. These policies schedule jobs based on the

generalized processor sharing (GPS) algorithm (Parekh and Gallager, 1993),

where theoretical guarantees on delay are realized and proven by queueing the-

ory (Paschalidis, 1999; Bertsimas et al., 1999). In addition, we also propose a

QoS-aware-Capping (QoSCap) policy that is adapted to workload traces with

hours-/days-long jobs. In all three policies, in order to enable HPC systems to

track a given power target, our policies schedule different types of jobs accord-

ing to their properties (e.g., job size, execution time, QoS constraints, etc.) and

adjust the power caps of servers. Our policies also select the optimal bidding

parameters to participate in regulation service markets. Using both simulation

and real-system experiments, we demonstrate that our policies outperform base-

line policies (Chen et al., 2014; Chen et al., 2019) in terms of cost reduction and

QoS assurance. We show that our policy is robust to different workload profiles,

and we demonstrate that our policy reduces the electricity cost by 10-50% while

abiding by QoS constraints (see Chapter 2 for further details).

4

• Strategies to quantify and mitigate the impact of network congestion

on HPC systems:

We design a novel job allocation policy, Level-Spread, for HPC systems with

dragonfly networks based on the hierarchical structure of the dragonfly topology.

This policy balances the communication on network links and mitigates network

contention by spreading jobs within the smallest network level that a given

job can fit in at the time of job allocation. We implement and release the

Level-Spread policy in the SST simulator (Sandia National Laboratories, 2020).

Through packet-level network simulations, we show that our proposed policy

reduces the communication time by 16% on average compared to the state-of-

the-art policies by harnessing node locality and balancing link congestion (see

Chapters 3.2-3.4 for further details).

To quantify the impact of network congestion, we conduct experiments on a

12k-node HPC system, Cori, where we run a diverse set of parallel applications

while running network congestors simultaneously on nearby nodes. We collect

application performance as well as Aries network counter metrics. We demon-

strate that the sensitivity of parallel applications on HPC network congestion

varies. Especially, we show that applications which spend a significant amount

of time on MPI collective communications suffer large performance degradation

(i.e., application execution time extended by up to 7x) under network conges-

tion situation. We also demonstrate that certain Aries network metrics are good

indicators of network congestion (see Chapters 3.5-3.6 for further details).

Based on the detected correlation between network metrics and job perfor-

mance, we propose a Network-Data-Driven (NeDD) job allocation policy for

HPC systems. This policy monitors the network traffic on each node at runtime

and prioritizes allocating jobs onto routers with less traffic. Through experi-

5

ments on a large HPC system, Cori, we demonstrate that our proposed policy

outperforms the baseline job allocation policy by 7-30% (see Chapters 3.7-3.8

for further details).

1.2 Related Work

In this section, we discuss the related work in HPC system demand response partici-

pation and HPC resource management.

1.2.1 HPC System Demand Response Participation

The problem of improving energy cost efficiency for HPC systems has received con-

siderable attention in recent years. According to a survey (Maiterth et al., 2018),

several major HPC centers around the world are employing or actively exploring

energy-aware resource management strategies. It has been reported that these HPC

centers are integrating job schedulers with power grid information, developing power-

adaptive scheduling in SLURM, detecting power-hungry applications at runtime, or

building power-capping infrastructures (Maiterth et al., 2018).

In recent years, there have been significant advances on integrating HPC systems

with power markets. To enable HPC systems to participate in power markets, various

power programs including peak shaving (Govindan et al., 2011), dynamic energy

pricing (Le et al., 2016a), and emergency load reduction (Zhang et al., 2015; Tran

et al., 2016) have been explored. Different kinds of policies have been proposed for

HPC systems to participate in frequency control, regulation service, or operating

reserves (Wang et al., 2019a; Cioara et al., 2018; Aksanli and Rosing, 2014; Ahmed

et al., 2017; Chen et al., 2014; Chen et al., 2019). The impact of power limitations

on the performance of HPC systems is also important. Using a model inspired by a

real HPC system, Borghesi et al. (Borghesi et al., 2019) showed that it is possible to

apply frequency scaling to save energy without penalizing users. Another recent trend

6

is exploring the coordination of multiple HPC systems together in power markets.

Some strategies are proposed to enable multiple HPC systems to collaborate in power

markets and mitigate workload uncertainty (Yu et al., 2017; Niu and Guo, 2016).

In conjunction with these efforts, there has been a growing interest for HPC

systems to participate in demand response. Prior works have explored strategies for

HPC systems to participate in demand response by joint management of IT workloads

with cooling facilities (Cupelli et al., 2018; Chen et al., 2014; Cioara et al., 2018),

renewable energy sources (Le et al., 2016b; Pahlevan et al., 2020), energy storage

devices (Shi et al., 2016; Pahlevan et al., 2020), or electric vehicles (Li et al., 2014).

It has also been shown that without renewable energy sources or energy storage

devices, computing servers are already capable of adjusting power consumption to

meet the power target in demand response. Chen et al. (Chen et al., 2014) developed

a heuristic power regulation policy for HPC systems to participate in the regulation

service program through job scheduling, processor power capping, and server state

transition. Chen et al. (Chen et al., 2019) also designed a QoS-aware policy for HPC

systems to meet regulation service requirement while considering jobs’ QoS. However,

none of the existing works have a mechanism to provide QoS assurance to jobs.

In addition to the power efficiency work from the perspective of HPC systems,

there are also approaches from the perspective of power markets. Clausen et al. pre-

sented a qualitative study of service contracts between electricity service providers

and HPC systems in the United States and Europe (Clausen et al., 2019). Novel

incentive mechanisms have been proposed to motivate power grids and HPC systems

to participate in demand response (Paschalidis et al., 2012; Zhou et al., 2020; Wang

et al., 2019b; Liu et al., 2014). For geo-distributed HPC systems, Sun et al. pro-

posed an online auction mechanism for emergency demand response to motivate HPC

systems to shuffle workload across multiple sites (Sun et al., 2016).

7

Our work focuses on regulating the power of computing servers in HPC systems

to participate in regulation service programs. We propose policies that provide QoS

assurance to jobs during the participation, and we evaluate our polices on real-world

clusters.

1.2.2 HPC Job Allocation and Network Contention

Many prior works have observed the negative impact of job interference on the per-

formance of HPC systems (Bhatele et al., 2013b; Leung et al., 2002; Jokanovic et al.,

2015; Kambadur et al., 2012). Especially for dragonfly networks, several studies have

explored the influence of job allocation on job performance. Jain et al. (Jain et al.,

2014) compared the performance of six dragonfly-specific job allocation policies. They

observed that random allocation is generally beneficial in spreading network traffic

and reducing communication hot spots. We include these allocation policies as part of

the baseline policies in our work (Sec. 3.3.4). Budiardja et al. (Budiardja et al., 2013)

showed that spreading jobs to all groups during allocation distributes the network

traffic, and thus, reduces congestion.

Yang et al. (Yang et al., 2016) observed performance degradation due to random

allocation when multiple jobs run simultaneously on a dragonfly machine. They found

that the network congestion caused by communication-intensive jobs greatly impacts

the performance of other jobs.

Job allocation on traditional network topologies such as fat-tree also inspired our

work. For example, Jokanovic et al. (Jokanovic et al., 2015) proposed a size-aware

policy that alleviates communication interference by allocating large jobs on one side

of the system and small jobs on the other side.

On the topic of link configuration and bandwidth for dragonfly machines, Groves

et al. (Groves et al., 2016) analyzed the influence of link bandwidth on job execution

times. Several studies compared different global link arrangements for dragonfly

8

networks in terms of theoretical bisection bandwidth (Hastings et al., 2015; Belka

et al., 2017). Routing algorithms for dragonfly networks have also been explored

extensively (Garcia et al., 2013; Faizian et al., 2016; Jiang et al., 2009; Kim et al.,

2008; Jain et al., 2014). Task mapping, which refers to mapping the tasks of a

parallel application onto the processors of the allocated computing nodes, has also

been studied on dragonfly networks (Prisacari et al., 2014b; Tuncer et al., 2017).

Network contention/congestion is an important topic in HPC research. It has

been reported that, on HPC systems, inter-job network contention causes perfor-

mance variability as high as 2X (Bhatele et al., 2013a), 2.2X (Smith et al., 2016),

3X (Bhatele et al., 2020), or 7X (Chunduri et al., 2017). Analysis has shown that net-

work contention, rather than other factors such as OS noise, is the dominant reason

for performance variability (Bhatele et al., 2013a; Smith et al., 2016; Bhatele et al.,

2020).

Some prior works have analyzed the statistics of flit or stall counts on HPC sys-

tems. Jha et al. analyzed packet and stall count on a 3D-torus network and provided

a visualization method to identify network hot spots (Jha et al., 2018). Brandt et

al. measured network stall/flit ratio and showed its variation across links and over

time (Brandt et al., 2016). These works have not analyzed the relationship between

network counters and job performance.

A few works have explored the relationship between network metrics and job

performance using machine learning. Jain et al. trained tree-based classifiers to

predict job execution time on a 5D-torus system (Jain et al., 2013; Bhatele et al.,

2015). They found that buffers and injection FIFOs are important metrics and that

the hop-count metric is not helpful in predicting performance. On Cori, Groves et

al. demonstrated strong correlations between communication latency and Aries net-

work counters (Groves et al., 2017). They built machine learning models to forecast

9

sub-optimal performance and identified network counters related to performance vari-

ability (Bhatele et al., 2020). Machine learning methods in this domain often focus on

predicting performance or other outcomes; in contrast, our work’s focus is on provid-

ing an analysis on selected network counters’ role in understanding job performance.

10

Chapter 2

Data Center Participation in Demand
Response with QoS Assurance

2.1 Introduction

Demand response offers opportunities for electricity consumers to significantly reduce

their electricity cost if they can regulate their power consumption to follow market

requirements (Hansen et al., 2014). The aim of demand response programs is to help

stabilize the power grid and to balance the demand and the supply side of the power

grid. Balancing supply and demand becomes increasingly important because the

integration of renewable sources of energy into the grid poses significant challenges.

As renewable supplies such as solar and wind energy depend on weather conditions,

they are highly volatile and intermittent (Novoa and Jin, 2011). Demand response

offers a solution to this challenge by absorbing the volatility of energy generation

with demand-side regulation (Hansen et al., 2014), and power providers motivate

consumers’ participation by offering electricity bill reduction (New York Independent

System Operator (NYISO), 2020).

As a specific form of demand response power programs, Regulation Service Re-

serves (RSRs) require participants to regulate their power consumption following a

dynamically-changing power target that is updated every few seconds (New York In-

dependent System Operator (NYISO), 2020). When participating in RSRs, users first

determine their average consumption and the reserves they can provide. Users get

11

more reduction in their electricity cost if they provide larger reserves, i.e., if they are

capable of tracking a power target varying in larger range. After the average value

and the reserve amount are selected, the real-time value of the target power consump-

tion is calculated based on a signal provided by independent system operators (ISOs).

This signal cannot be known in advance, but its statistical features are known. The

electricity cost of a user is determined by its average power, the reserves it provides,

and the tracking error which quantifies the difference between the target power and

the user’s actual power usage at every moment. Larger tracking error results in higher

cost.

Data centers1 play an essential role in fulfilling computational tasks in various

domains, including analyzing commercial data, supporting online services, conducting

scientific research, etc. However, data centers are significant power consumers. In

2014, the power consumption of data centers in US has reached 70 billion kWh, close

to 2% of US electrical usage (Shehabi et al., 2016). The top-1 supercomputer in 2020,

the Fugako supercomputer, consumes a peak power of 28 MW (TOP500, 2020), which

generates a cost of more than $100,000 per day. Therefore, the electricity cost is a

burden for data centers, and reducing the electricity cost of data centers will not only

benefit existing data centers but also pave the way for future exascale computing

systems.

Data centers are good candidates to participate in RSRs because they are capable

of regulating their power consumption in a large range through various strategies,

including job scheduling (Cioara et al., 2018), server state transition (Gandhi et al.,

2012), server power capping (Reda et al., 2012), virtual machine (VM) provision-

ing (Chen et al., 2013), etc. For example, to reduce the power consumption of a

data center, we can postpone the execution of some jobs by scheduling, or turn some
1In this thesis, we define data centers broadly, including both enterprise and high performance

computing data centers.

12

servers into sleep states (or other power-saving states). We can also apply power caps

on the processors by limiting their voltage and frequency. For data centers support-

ing virtual environments, one can also reduce the CPU/memory resource limits of

VMs (Dhiman et al., 2009; Chen et al., 2013). Previous work has proposed power

regulation policies for data centers to participate in RSRs, but without guarantees

on the Quality-of-Service (QoS) of jobs (Chen et al., 2014; Chen et al., 2019). The

QoS of jobs, in this work quantified by the jobs’ sojourn time in a data center, is a

vital index that data center users care about. It is unacceptable for data centers to

participate in RSRs at the cost of violating the QoS constraints of jobs.

In this thesis, we first propse a policy called QoS-Guarantee (QoSG) that enables

data centers to participate in RSRs while providing guarantees on the QoS of jobs.

Later in Section 2.6, we also propose a policy called Adaptive-QoS-Assurance (AQA)

that is an improved version of the QoSG policy. Our QoSG and AQA policies minimize

the electricity cost by selecting the optimal values of the average power consumption

and the reserve amount. The policies handle the scheduling of a heterogeneous work-

load by coordinating separate groups of servers to run different types of jobs following

the spirit of a Generalized Processor Sharing (GPS) algorithm. As each type of jobs

differs in their processing time, power profile, and QoS constraint, our policies assign

different weights to each job type. These weights determine the ratio of the number

of servers running each type of jobs, and the weights are also optimized to minimize

electricity cost under the QoS constraints. The key in providing QoS guarantee is to

determine an acceptable range for the policy parameters using a queueing theoretic

result from Paschalidis et al. (Paschalidis, 1999; Bertsimas et al., 1999), which quan-

tifies the probability of large delay when services are following the GPS algorithm.

To summarize, the contributions of this section of the thesis are as follows:

• We propose policies that enable data centers and HPC systems to participate

13

in demand response programs with theoretically-proven guarantees on the QoS

of jobs.

• We evaluate our policies in both large-scale simulations and real-system exper-

iments on a cluster. We demonstrate that applying our policies can potentially

reduce the electricity cost of HPC systems by 10-50% while abiding by job QoS

constraints.

2.2 Background on Demand Response and Regulation Service
Reserves

In electricity grid, the generation and consumption of power should be balanced in

(near) real-time, otherwise catastrophic events such as blackouts happen. However,

due to the rapidly growing trend of incorporating renewable energy sources in the

power grid (Bohringer et al., 2009; EIA, 2014), ensuring the stability of the power

grid becomes increasingly challenging and important because renewable supplies such

as solar and wind are highly volatile and intermittent (Novoa and Jin, 2011). To

meet this challenge, various demand response programs have been developed to help

stabilize the power grid by motivating the demand side of the grid to adjust power

consumption in response to power supply. Peak shaving (Govindan et al., 2011),

dynamic energy pricing (Le et al., 2016a), and emergency load reduction (Zhang

et al., 2015; Tran et al., 2016) are programs of this kind.

Starting from 2006, one of the largest US ISOs, PJM, has allowed electricity

consumers to participate in reserve transactions (New York Independent System Op-

erator (NYISO), 2020). Since then, capacity reserves have started to make significant

contributions in stabilizing power systems. The capacity reserve programs allow the

demand side to provide capacity reserves, where power consumers are required to

regulate their power consumption to track a dynamic power target based on the

14

amount of reserve that they intend to offer. By providing a larger amount of reserves,

consumers receive a larger cost reduction as a reward.

There are mainly three types of capacity reserves, ordered from more to less valu-

able as follows: (1) frequency control requires power consumers to counter frequency

deviations by modulating their consumption at near-real-time; (2) regulation service

reserves (RSRs) asks consumers to react to a power target broadcast by independent

system operators (ISOs) every few seconds; (3) operating reserves are offered in a

slower pace where a power target maintains its value for up to a few hours. We target

regulation service in this work as it is a particularly profitable choice for data centers

because data centers are capable of efficiently regulating power in a few seconds and

matching the signal update interval of regulation service programs.

To participate in RSRs, at the beginning of every hour, electricity consumers

should determine their average power consumption P̄ and the reserve R for this hour.

Within this hour, the dynamically-changing power target Ptarget(t) is computed by

P̄ , R, and a signal y(t) provided by ISOs, according to the formula:

Ptarget(t) = P̄ + y(t)R. (2.1)

Assuming the actual power usage of a consumer at this moment is P (t), we define

the tracking error by

ε(t) =
|P (t)− Ptarget(t)|

R
, (2.2)

which quantifies the difference between the power target and the actual power usage.

At the end of this hour, the tracking performance is evaluated by computing the

average tracking error ε̄ over this hour. Then, the electricity cost for this hour can be

estimated as

Cost =
(
ΠP P̄ − ΠRR + ΠεRε̄

)
× 1h, (2.3)

where ΠP , ΠR, Πε are fixed monetary cost coefficients determined by the power mar-

15

ket. As shown in Eq. (2.3), consumers will get higher cost reduction if they provide

larger reserves by choosing a larger value of R, but they will also be penalized for

large tracking error. In addition to the average error penalty, a consumer may lose his

contract with ISOs if their instantaneous tracking performance is too poor to meet

the tracking error constraints from ISOs. In this thesis, we use the following tracking

error constraint in a probabilistic form:

Prob[ε > 0.3] < 10%, (2.4)

which states that the tracking error is only allowed to exceed a threshold of 0.3 for

less than 10% of the time.

2.3 Data Center and Workload Model

The power consumption of a data center consists of power from servers, cooling sys-

tems, and affiliated components such as network and storage systems. Because servers

have a large power contribution and are typically more flexible than other systems,

in this thesis, we focus on the regulation of server power through job scheduling and

server power capping.

We assume servers are homogeneous: they consume the same amount of power

when running the same job and they finish the execution of that job in the same

amount of time (when under the same power cap setting). This assumption is an

approximation to real data centers and is a prerequisite step towards future work

considering hardware variations or data centers composed of multiple types of servers.

We group the computing jobs in a data center workload into different types ac-

cording to their power consumption, processing time, and QoS constraints. We assign

separate queues for different job types, and inside each queue, jobs are processed in a

first-come-first-serve manner. In the following, we denote the number of job-type in a

16

workload by J . A jth-type job (j = 1, 2, ..., J) has a shortest processing time T j and

average power consumption pj. We assume those values are known in advance from

prior measurements. In case the job types are not known in advance, a data center

could record and analyze the properties of the jobs running on it in a “data collection

period” prior to participating in demand response. The jobs running in this “data

collection period” can be classified into several types according to their processing

time, power usage, and QoS constraint. Then, the policies proposed in this thesis can

be applied.

Our AQA policy can be applied to data centers with parallel jobs that simul-

taneously occupy multiple nodes to run (whereas the QoSG policy only applies to

single-node jobs). We assume no job consolidation, i.e., different jobs cannot share

the same node, which is typical in many HPC systems due to efficiency and security

considerations. Unless specifically mentioned, we assume jobs cannot be interrupted

or stopped in the middle of their execution, which is common in high-performance

computing systems, and the relaxation of this assumption is discussed in Sections 2.4.6

and 2.7.7.

Since we have jobs grouped into different types, we also group the servers according

to the jobs they are running. At runtime, the servers are dynamically and conceptually

partitioned into an idle-server group and J separate active-server groups, as shown

in Fig. 2·1. When a jth-type job is started on a server, the server switches from the

idle-server group into the jth active-server group, and switches back after the job

finishes.

We define the quality-of-service (QoS) degradation of a job as the extra time used

for processing the job compared to its minimum processing time T jmin, calculated by

the formula:

Qj =
Tso − T jmin
T jmin

.

17

Figure 2·1: Our data center model. Jobs are grouped into different types and each
type is processed in a separate queue. Servers are conceptually (not physically)
grouped into an idle-server group and several active-server groups. Servers in the
jth active group run the jth-type jobs. The total number of active servers n(t) is
adjusted to track the power target.

18

Here, minimum processing time T jmin is defined as the time for processing a jth-type

job without power caps and without being delayed in the queue. The sojourn time

Tso is defined as the time from a job’s submission to completion, including the waiting

time in the queue Twait and the actual processing time Tproc:

Tso = Twait + Tproc.

In this thesis, we focus on QoS constraints in a probabilistic form:

Prob[Qj ≥ Qj
thres] ≤ δj (j = 1, 2, ...), (2.5)

where Qj
thres is a given QoS threshold for the jth-type jobs, and we set δj = 10% in

all of our evaluations. This formula means that only a small fraction (δj) of jth-type

jobs have a QoS degradation exceeding their QoS threshold Qj
thres.

2.4 The QoS-Guarantee (QoSG) policy

In this section, we first give an overview of our QoSG policy. After that, we briefly ex-

plain the Generalized Processor Sharing (GPS) algorithm, which is used in developing

our QoSG and AQA policies. We also introduce and generalize a theorem proven by

Paschalidis et al. (Paschalidis, 1999; Bertsimas et al., 1999), which quantifies the de-

lay in the GPS algorithm. Finally, we explain how our QoSG policy works at runtime

in detail, as well as how our policy determines the optimal parameters that minimize

the cost under QoS constraints.

2.4.1 An Overview of QoSG Policy

To enable data centers to participate in RSRs with theoretically-proven QoS guar-

antees, we design our QoSG policy following the spirit of a Generalized Processor

Sharing (GPS) policy (Parekh and Gallager, 1993). When applied to the current

19

context, according to the GPS algorithm, all the active servers are partitioned into

several groups. Each group of servers executes one type of jobs. The number of

servers in every group is determined by a set of weights, wj (with
∑J

j=1wj = 1).

To follow the power target in Eq. (2.1) at runtime, our policy determines whether

to start some jobs waiting in the queues as well as what power cap to be applied

on each server. To be specific, with a given power target Ptarget(t), our policy first

computes the total number of servers that should be actively running jobs, n(t). As

we apply the GPS algorithm, approximately wjn servers should be running type-j

jobs. Consequently, n(t) can be solved by Ptarget =
∑J

j=1 nwjpj + (N − n)pidle. Here,

N is the number of servers in the data center. pidle is the power consumption of an

idle server, and pj is the power consumption for running a type-j job. For each type of

job, if the current number of servers running type-j jobs is less then the requirement

determined by the GPS algorithm, some type-j jobs waiting in the queue will start

running to match the requirement.

Since job scheduling alone cannot regulate HPC system power at very high gran-

ularity, after the waiting jobs are scheduled, we apply a power cap on each server to

track the power target accurately. As there may not always exist a sufficient number

of jobs in the queues, which prevents the actual power consumption to reach the tar-

get, we solve this mismatch by allowing the data center to have a queue of standby

jobs with loose QoS constraints at the time-scale of hours/days. When there is a lack

of a sufficient number of jobs in the other queues, some standby jobs will be started

to guarantee good signal tracking.

At the beginning of every hour, our policy selects the optimal P̄ (the average

power), R (the reserves), as well as the weights wj that determine how many servers

to be allocated for each type of jobs. We select these parameters by solving an op-

timization problem that minimizes the monetary cost in Eq. (2.3) under the QoS

20

constraints of jobs. The optimization formulation includes a constraint that guaran-

tees QoS using a theorem proven by Paschalidis et al. (Paschalidis, 1999; Bertsimas

et al., 1999). The theorem proves that, in the GPS algorithm, the number of jobs

with large delay decreases exponentially as the delay increases. With this theorem,

the constraints on the QoS of jobs are converted into constraints on P̄ , R, and wj.

2.4.2 Generalized Processor Sharing (GPS) Algorithm

The Generalized Processor Sharing (GPS) algorithm is originally proposed to provide

balanced performance in network scheduling (Parekh and Gallager, 1993). It assumes

there are several streams of messages submitted to separate queues and processed by

a single communication channel. Because these queues share the same channel, the

policy partitions the channel’s bandwidth and each part serves one of the queues.

With a given set of weights wj (j = 1, 2, ...) for the queues satisfying
∑

j wj = 1,

the GPS algorithm states that: (1) if all the queues are non-empty, the channel

bandwidth will be partitioned according to the weights wj; (2) if some queues are

empty at a certain time, the portion of bandwidth for the empty queues will be shared

by the non-empty queues; i.e., the channel bandwidth will be partitioned according

to the weights of the non-empty queues. An advantage of the GPS algorithm is that

there exists a minimal service rate for each queue. That is, assuming the channel

has a fixed bandwidth B, the effective bandwidth of the j-th queue is at least wjB,

and this effective bandwidth will be larger if there is bandwidth sharing due to the

existence of empty queues.

2.4.3 Generalization of a Theorem Quantifying Delay in GPS algorithm

Paschalidis et al. have proven a theorem that quantifies the delay of messages when

processed by a stochastic channel following the GPS algorithm (Paschalidis, 1999;

Bertsimas et al., 1999). Their theorem concerns the situation where two streams of

21

Table 2.1: Variables Used in the Problem Formulation

Label Description
R The reserve amount to participate in regulation service
P̄ The average power to participate in regulation service
N The total number of servers in the data center
pidle The power consumption of a server that is idle
J The number of job types
pj The power consumption of a jth-type job
λj The average number of jth-type jobs submitted to

the data center per second
mj The number of servers (nodes) required to run

each jth-type job
T j The processing time for each jth-type job
Dj The delay of a jth-type job, i.e., the time from submission

to starting
Dj
max The maximal delay that the majority of jth-type jobs

should satisfy
Qj
thres A threshold in the QoS constraint for jth-type jobs
δj A probability in the QoS constraint for jth-type jobs
δjD A parameter calculated by δj
Aj(t) The random variable representing the amount of work

submitted to the jth queue per second
B(t) The random variable representing the total amount of

service provided by the data center per second
y(t) The ISO signal at time t, which is always within [−1, 1]
n(t) The number of servers that should be active at time t
αj An empirically-determined coefficient in quantifying

the probability of large delay
θ∗j A coefficient in the exponent quantifying the probability

of large delay
wj The weights used in the GPS algorithm

22

messages are submitted to two queues respectively and processed by a single commu-

nication channel. Two queues are independent and the number of bits received by

each queue in unit time follows a stochastic process. The bandwidth of the channel

also varies from time to time following another stochastic process. Assuming the

channel applies the GPS algorithm with fixed weights wj (here j = 1, 2), the theo-

rem quantifies the distribution of delay Dj, i.e., the waiting time for a certain bit of

message to be processed in the queue j. They have proven that the portion of bits

with large delay decreases exponentially according to

Prob[Dj ≥ m] = αje
−mθ∗j (j = 1, 2) (2.6)

as m −→ ∞. Here, αj is a coefficient to be determined empirically. θ∗j is a coefficient

that can be calculated based on the distribution of the bit arrival and the distribution

of the channel bandwidth. This theorem is the key to providing QoS guarantees in our

thesis, but first, we need to generalize it to multiple-queue scenarios. As mentioned

in their thesis, a rigorous generalization of their theory to multiple-queue scenarios is

particularly hard. The reason is that, to apply the GPS algorithm in multiple-queue

scenarios, we need to analyze every case where some of the queues are empty while

others are not. With the increase of the number of queues J , the number of cases

increases exponentially with O(2J), making the analysis unapproachable.

To make the generalization of the theory to multiple-queue scenarios feasible,

we make a “decoupling” assumption in our theoretical analysis: we assume different

queues are decoupled from each other, so that the bandwidth will always be parti-

tioned according to the weights wj no matter whether there are empty queues or not.

With this assumption, we do not need to analyze the exponentially large number

of cases where some queues are empty. It deserves mentioning that this decoupling

assumption does not reduce the validity of our theory. That is because if we provide

23

QoS guarantees by applying the GPS algorithm with this assumption, then applying

the original GPS algorithm should also guarantee QoS because its effective bandwidth

is never smaller.

Following the derivations in Ref. (Paschalidis, 1999; Bertsimas et al., 1999), we

generalize their theorem to multiple-queue scenarios under the decoupling assumption.

We prove that the portion of bits with large delay decreases exponentially as m −→∞:

Prob[Dj ≥ m] = αje
−mθ∗j , (j = 1, 2, ..., J). (2.7)

The coefficients θ∗j for the j-th queue can be calculated by

θ∗j = sup
θ≥0, ΛGPS,j(θ)<0

−ΛB(−θwj), (2.8)

where the function ΛGPS,j(θ) is defined as

ΛGPS,j(θ) = ΛAj(θ) + ΛB(−θwj). (2.9)

In this equation, ΛAj and ΛB are the log moment-generating functions for the random

variables Aj(t), B(t). Here, Aj(t) represents the number of bits arriving in queue j

per unit time, and B(t) represents the channel bandwidth at time t. “sup” represents

the supremum of the expression under the denoted condition.

The following derivations show how we arrive at Eq. (2.7) and Eq. (2.8): We

derive Eq. (2.7) using Theorem 7 in Ref. (Paschalidis, 1999) and Theorem 7.2 in

Ref. (Bertsimas et al., 1999).

Theorem 7 in Ref. (Paschalidis, 1999) proves that, in a two-class system under

the GPS algorithm, as m −→∞, the delay tail probability can be approximated by

Prob[Dj ≥ m] ≈ αje
−mθ∗j , (j = 1, 2). (2.10)

24

Eq. (28) in Ref. (Paschalidis, 1999) gives

θ∗1 = sup
θ≥0, ΛGPS,1(θ)<0

[ΛA1(θ)− ΛGPS,1(θ)] , (2.11)

where ΛGPS,1 is defined by

ΛGPS,1 = max
[
ΛI
GPS,1(θ),ΛII

GPS,1(θ)
]
, (2.12)

and ΛI
GPS,1(θ), ΛII

GPS,1(θ) are defined in Eqs. (22)(23) in Ref. (Paschalidis, 1999).

Because ΛI
GPS,1(θ) corresponds to the case where the second queue is empty and the

effective bandwidth of the first queue is larger than w1B(t), we neglect this case

following our decoupling assumption. This implies ΛGPS,1 = ΛII
GPS,1(θ), and

θ∗1 = sup
θ≥0, ΛGPS,1(θ)<0

[
ΛA1(θ)− ΛII

GPS,1(θ)
]
. (2.13)

In the proof of Theorem 7.2 in Ref. (Bertsimas et al., 1999), ΛII
GPS,1(θ) is given by

ΛII
GPS,1(θ) = sup

a
sup

x1−w1x3=a
x2≥w2x3

[θa− Λ∗A1(x1)− Λ∗A2(x2)− Λ∗B(x3)] , (2.14)

where Λ∗(·) is the Legendre transform of Λ(·), defined by

Λ∗(a) = sup
θ

(θa− Λ(θ)) . (2.15)

Λ(·) denote the log-moment generating functions, and x1(t), x2(t), x3(t) are the em-

pirical rates of random process A1, A2, B, respectively. Because of the decoupling

assumption, the influence of process A2 can be removed from Eq. (2.14). Conse-

25

quently, we get

ΛII
GPS,1(θ) = sup

a
sup

x1−w1x3=a
[θa− Λ∗A1(x1)− Λ∗B(x3)]

= sup
x1

sup
x3

[θx1 − θw1x3 − Λ∗A1(x1)− Λ∗B(x3)]

= sup
x1

[θx1 − Λ∗A1(x1) + ΛB(−θw1)]

= ΛA1(θ) + ΛB(−θw1). (2.16)

Combining Eq. (2.13) and Eq. (2.16), we conclude at

θ∗1 = sup
θ≥0, ΛGPS,1(θ)<0

−ΛB(−θw1). (2.17)

For a multi-queue system, because of our decoupling assumption, Eq. (2.17) holds

for the first queue. Because all queues are equivalent to each other, we can directly

generalize Eq. (2.17) by changing the subscripts and we arrive at Eq. (2.8).

2.4.4 Our QoSG Policy at Runtime

We first elaborate on how our policy schedules jobs and adjusts server power caps at

runtime assuming the values of P̄ , R and the weights in the GPS algorithm wj are

already selected. The selection of these parameters will be discussed in Section 2.4.5.

To apply the GPS algorithm to the data center context, we regard the “channel

bandwidth” as equivalent to the amount of service provided by the data center per

second. Then, partitioning the bandwidth according to weights wj is equivalent to

partitioning the active servers in the data center into separate groups.

To let the data center’s power consumption P (t) follow the power target Ptarget(t)

in Eq. (2.1), at every moment, we control the total number of active servers n(t) at

this moment. Assume N is the total number of servers in the data center, pidle is the

power consumption of an idle server, and pj is the power consumption for running

a type-j job. According to the GPS algorithm with our decoupling assumption,

26

there should be n(t)wj servers running type-j jobs at this moment. Then, the total

power consumption of the data center is composed of the power from active servers,∑J
j=1 nwjpj, and the power from idle servers, (N − n)pidle. Thus, by matching the

power target with the data center’s power, we get

Ptarget = P̄ + y(t)R =
J∑
j=1

nwjpj + (N − n)pidle. (2.18)

We compute the number of servers that should be active at this moment as

n(t) =
P̄ + y(t)R− pidleN∑J

j=1 wjpj − pidle
. (2.19)

Then, we determine the number of servers that should be in each group according to

the weights wj, and our policy schedules jobs to match those numbers. For example,

if there are fewer servers running type-j jobs than there should be, the policy im-

mediately starts some type-j jobs without power caps. On the other hand, if there

are more servers running j-type jobs than there should be, the jobs waiting in the

corresponding queue will not be processed.

However, because we assume interrupting a job in the middle is not allowed, the

actual number of active servers may be larger than n(t). To reduce the impact of this

mismatch, our policy applies power caps on all active servers to fine-tune the power

consumption. Assume the power of a type-j job can be adjusted from pj,max down to

pj,min by applying power caps on servers. Let us denote the current number of active

servers processing type-j jobs as nj. Then, to track the power target better, for each

job type j, our policy reduces the power cap on the corresponding servers to pj,cap

(pj,min ≤ pj,cap ≤ pj,max). That pj,cap is determined by letting the equation

ω =
pj,cap − pj,min
pj,max − pj,min

(2.20)

27

hold for every job type to ensure fairness. Here, ω ∈ [0, 1] is a single number calculated

by

Ptarget =
J∑
j=1

njpj,cap + (N − n)pidle. (2.21)

2.4.5 Determining the Optimal P̄ , R and wj

Our policy finds the optimal values of the average power P̄ , the reserves R, and

the GPS algorithm weights wj by minimizing the data center’s cost in Eq. (2.3).

Obviously, we should guarantee that the maximal power target P̄+R and the minimal

power target P̄ −R are achievable. Therefore, we have the following constraints:

P̄ +R ≤ N ·max
j
pj, (2.22)

P̄ −R ≥ N · pidle. (2.23)

Next, we derive the condition for guaranteeing the QoS of jobs. Based on the

theorem introduced in Section. 2.4.3, we know that, to guarantee the QoS constraint

for the type-j jobs, i.e.:

Prob[Qj ≥ Qj
thres] ≤ δj (2.24)

is equivalent to the condition:

Prob

[
T jwait + T jproc − T

j
min

T jmin
≥ Qj

thres

]
≤ δj (2.25)

⇔ Prob[T jwait ≥ Qj
thresT

j
min] ≤ δj (2.26)

⇔ Prob[Dj ≥ Dj
max] = αje

−Djmaxθ∗j ≤ δj (2.27)

⇔ θ∗j ≥ δjD = − 1

Dj
max

ln

(
δj

αj

)
. (2.28)

Here, because the actual processing time T jproc is usually close to the minimum T jmin,

we assume they are equal and we transform Eq. (2.25) into Eq. (2.26). As the delayDj

in Eq. (2.7) refers to the waiting time T jwait, we transform Eq. (2.26) into Eq. (2.27)

28

after defining Dj
max = Qj

thresT
j
min. The right hand side of Eq. (2.27) comes from

Eq. (2.7).

As we mentioned in Section 2.4.3, to get an explicit expression for θ∗j , we need

the log moment-generating functions that characterize the stochastic processes of job

arrival and job execution. To begin with, we denote the amount of service provided

by the data center per second as B(t), which corresponds to the “channel bandwidth”

in Section. 2.4.3. Since the servers are homogeneous in the data center, each server

provides the same amount of service per second. Let us set the amount of service

provided by each server per second as 1, then the total amount of service provided by

the data center per second is n(t), where n(t) is the current number of active servers.

With this definition of “amount of service”, a type-j job that takes Tj seconds to

process will require Tj amount of service.

For the J types of jobs submitted to J separate queues, we assume the job arrival

time in each queue follows a Poisson process2, and we denote the parameter for the

Poisson process as λj, which represents the average number of type-j jobs arriving

every second. Then, the amount of work submitted to the j-th queue per second,

Aj(t), follows a Poisson distribution whose log moment-generating function is

ΛAj(θ) = λj(e
θTj − 1). (2.29)

Practically, the processing time of a job increases when its power is capped, which

makes Tj no longer a fixed number. In the following theoretical part, since server

power-capping only plays a fine-tuning role in our policy, we assume the power usage

and processing time of jobs are fixed. That is, we take Tj = T jmin and pj = pj,max. To

handle situations where the processing time of jobs deviates significantly, we could
2Our approach is not limited to job arrivals following a Poisson process or ISO signals being

Gaussian. Instead, the distributions of job arrivals and ISO signals can be general and our ap-
proach can still be applied. For other forms of distribution, the log moment-generating functions in
Eqs. (2.29)(2.30) should be calculated accordingly.

29

change the log moment-generating functions accordingly if we know their probability

distribution.

As discussed in Section 2.4.4, to participate in RSRs, our policy at runtime controls

the total number of active servers n(t) so as to adjust the data center power to match

the power target, and n(t) is derived in Eq. (2.19) according to the ISO signal y(t).

Although we cannot know the ISO signal y(t) in advance, its statistical features

are usually stable. For the ISO signal samples that we use in our evaluation, y(t)

generally follows a normal distribution2 with an average value ȳ = 0, and a standard

deviation yσ = 0.40. Then, from Eq. (2.19), we see that the number of active servers

n(t) should also follow a normal distribution with an average value

nµ =
P̄ − pidleN∑J
j=1wjpj − pidle

,

and a standard deviation

nσ =
yσR∑J

j=1 wjpj − pidle
.

Then, for the random variable B(t) = n(t) that represents the amount of service

processed by the data center per second, its log moment-generating function is

ΛB(θ) = nµθ +
1

2
n2
σθ

2. (2.30)

Using Eq. (2.29) and Eq. (2.30), we calculate θ∗j that quantifies the distribution of

large delay by Eq. (2.8). Then, Eq. (2.28) tells us whether a set of values for P̄ , R,

wj meets the QoS constraints or not.

To summarize, our policy selects the optimal parameters P̄ , R, wj that minimize

30

monetary costs under QoS constraints by solving the following optimization problem:

min
P̄ ,R,wj

(
ΠP P̄ − ΠRR + ΠεRε̄

)
× 1h (2.31)

subject to θ∗j ≥ δjD (j = 1, 2, ..., J) (2.32)

δjD = − 1

Dj
max

ln

(
δj

αj

)
(2.33)

θ∗j = sup
θ≥0, ΛGPS,j(θ)<0

−ΛB(−θwj) (2.34)

ΛGPS,j(θ) = ΛAj(θ) + ΛB(−θwj) (2.35)

ΛAj(θ) = λj(e
θTj − 1) (2.36)

ΛB(θ) = nµθ +
1

2
n2
σθ

2 (2.37)

nµ =
P̄ − pidleN∑J
j=1 wjpj − pidle

(2.38)

nσ =
yσR∑J

j=1 wjpj − pidle
(2.39)

P̄ +R ≤ N ·max
j
pj, P̄ −R ≥ N · pidle (2.40)

J∑
j=1

wj = 1, P̄ , R, wj > 0 (2.41)

After some calculations, we can simplify Eqs. (2.32) (2.34)-(2.37) into

nσ ≤ nµ√
2δjD

(2.42)

wj ≥
2δjDTj(

nµ+
√
n2
µ−2δjDn

2
σ

)
ln

(
1+

δ
j
D
λj

) ≡ w∗j (2.43)

(j = 1, 2, ..., J).

31

To derive that, we first plug Eq. (2.37) into Eq. (2.34):

sup
θ≥0, ΛGPS,j(θ)<0

−ΛB(−θwj) (2.44)

= sup
θ≥0, ΛGPS,j(θ)<0

−nµ(−θwj)−
1

2
n2
σ(−θwj)2 (2.45)

= sup
θ≥0, ΛGPS,j(θ)<0

−1

2
n2
σw

2
j

(
θ − nµ

n2
σwj

)2

+
n2
µ

2n2
σ

(2.46)

Whether the maximum point n2
µ

2n2
σ
of the above quadratic function can be reached

depends on whether θ = nµ
n2
σwj

meets the conditions θ ≥ 0, ΛGPS,j(θ) < 0.

To evaluate these conditions, we plug Eqs. (2.36) (2.37) into Eq. (2.35) and get

ΛGPS,j(θ) = λj(e
θTj − 1)− nµθwj +

1

2
n2
σθ

2w2
j . (2.47)

As the second-order derivative Λ′′GPS,j(θ) is always positive, the function ΛGPS,j(θ) is

convex. As we already know 0 is a root of ΛGPS,j(θ), there will be one positive root if

Λ′GPS,j(θ)
∣∣
θ=0

< 0 (2.48)

⇔ wj >
λjTj
nµ

(2.49)

⇔ nµwj > λjTj, (2.50)

and there will be no positive root otherwise. Actually, Eq. (2.50) is the requirement

that the average computing service provided should be larger than the average work

submitted for the j-th queue. We assume Eq. (2.50) is satisfied, otherwise the queue

length will diverge. Then, there is a positive root for ΛGPS,j(θ), and whether θ = nµ
n2
σwj

32

meets the conditions ΛGPS,j(θ) < 0 can be converted to

ΛGPS,j

(
nµ
n2
σwj

)
< 0 (2.51)

⇔ λj(e
nµTj

n2σwj − 1) <
n2
µ

2n2
σ

(2.52)

⇔ wj >
nµTj

n2
σ ln

(
1 +

n2
µ

2n2
σλj

) (2.53)

Now, there are two cases.

Case I: If both Eqs. (2.49) (2.53) hold, from Eq. (2.46) we get

θ∗j = sup
θ≥0, ΛGPS,j(θ)<0

−ΛB(−θwj) =
n2
µ

2n2
σ

. (2.54)

Then, the condition in Eq. (2.32) is equivalent to

θ∗j ≥ δjD (j = 1, 2, ..., J) (2.55)

⇔ nσ ≤
nµ√
2δjD

(2.56)

Case II: If Eq. (2.49) holds but Eq. (2.53) does not hold, i.e.,

wj ≤
nµTj

n2
σ ln

(
1 +

n2
µ

2n2
σλj

) (2.57)

assuming θ0 is the positive root of ΛGPS,j(θ), i.e.

ΛGPS,j(θ0) = ΛAj(θ0) + ΛB(−θ0wj) = 0 (2.58)

then the supremum in Eq. (2.44) is achieved at θ0, i.e.,

θ∗j = sup
θ≥0, ΛGPS,j(θ)<0

−ΛB(−θwj) = −ΛB(−θ0wj). (2.59)

33

In this situation, we can convert the condition in Eq. (2.32) by

θ∗j ≥ δjD (j = 1, 2, ..., J) (2.60)

⇔ −ΛB(−θ0wj) ≥ δjD (2.61)

⇔ ΛAj(θ0) ≥ δjD (2.62)

⇔ λj(e
θ0Tj − 1) ≥ δjD (2.63)

⇔ θ0 ≥
1

Tj
ln

(
1 +

δjD
λj

)
≡ κ (2.64)

⇔ ΛGPS,j(κ) ≤ 0 (2.65)

⇔ λj(e
κTj − 1)− nµκwj +

1

2
n2
σκ

2w2
j ≤ 0 (2.66)

⇔ δjD − nµκwj +
1

2
n2
σκ

2w2
j ≤ 0 (2.67)

⇔ δjD +
1

2
n2
σκ

2

(
wj −

nµ
n2
σκ

)2

≤
n2
µ

2n2
σ

(2.68)

⇔


nσ ≤ nµ√

2δjD

wj ≥
2δjDTj(

nµ+
√
n2
µ−2δjDn

2
σ

)
ln

(
1+

δ
j
D
λj

) ≡ w∗j
(2.69)

In the derivation from Eq. (2.68) to Eq. (2.69), we omit another requirement

wj ≤
2δjDTj(

nµ −
√
n2
µ − 2δjDn

2
σ

)
ln
(

1 +
δjD
λj

) (2.70)

because it can be proven that Eq. (2.70) is already implied by Eq. (2.57).

Combining Case I and Case II, we see that to guarantee the QoS we need

nσ ≤ nµ√
2δjD

wj >
λjTj
nµ

wj ≥ min

 nµTj

n2
σ ln

(
1+

n2µ

2n2σλj

) , 2δjDTj(
nµ+
√
n2
µ−2δjDn

2
σ

)
ln

(
1+

δ
j
D
λj

)


To further simplify the equations above, in the following, I will prove that there is

34

always
nµTj

n2
σ ln

(
1 +

n2
µ

2n2
σλj

) > 2δjDTj(
nµ +

√
n2
µ − 2δjDn

2
σ

)
ln
(

1 +
δjD
λj

) (2.71)

and
λjTj
nµ

<
2δjDTj(

nµ +
√
n2
µ − 2δjDn

2
σ

)
ln
(

1 +
δjD
λj

) . (2.72)

In fact, defining α = n2
σ

n2
µ
, we get

nµTj

n2
σ ln

(
1 +

n2
µ

2n2
σλj

) > 2δjDTj(
nµ +

√
n2
µ − 2δjDn

2
σ

)
ln
(

1 +
δjD
λj

)
⇔ ln

(
1 +

δjD
λj

)
>

(
1−

√
1− 2αδjD

)
ln

(
1 +

1

2αλj

)
Define

H(δjD) = ln

(
1 +

δjD
λj

)
−
(

1−
√

1− 2αδjD

)
ln

(
1 +

1

2αλj

)
, (2.73)

then we need to prove

H(δjD) > 0, δjD ∈ (0,
1

2α
). (2.74)

First, we notice that

H(0) = H(
1

2α
) = 0. (2.75)

As
dH

dδjD
=

1

δjD + λj
− α√

1− 2αδjD

ln

(
1 +

1

2αλj

)
, (2.76)

we have
dH

dδjD

∣∣∣
δjD=0

=
1

λj
− α ln

(
1 +

1

2αλj

)
. (2.77)

Then, define γ = 1
λj
, we get

dH

dδjD

∣∣∣
δjD=0

= γ − α ln
(

1 +
γ

2α

)
≡ I(γ). (2.78)

35

Because I(0) = 0 and
dI(γ)

dγ
=

α + γ

2α + γ
> 0, (2.79)

we know for γ > 0 there are

dH

dδjD

∣∣∣
δjD=0

= I(γ) > 0. (2.80)

From Eq. (2.76), we also have

lim
ζ→ 1

2α

−

dH

dδjD

∣∣∣
δjD=ζ

= −∞. (2.81)

Furthermore, H(δjD) is a concave function because

d2H

d(δjD)2
= − 1

(δjD + λj)2
− α2

(1− 2αδjD)3/2
ln

(
1 +

1

2αλj

)
< 0. (2.82)

Combing Eqs. (2.75) (2.80) (2.81) (2.82), we get the conclusion H(δjD) > 0.

Similarly, there are

λjTj
nµ

<
2δjDTj(

nµ +
√
n2
µ − 2δjDn

2
σ

)
ln
(

1 +
δjD
λj

) (2.83)

⇔
1 +

√
1− 2αδjD

2
ln(1 + δjDγ) < δjDγ. (2.84)

Define

L(γ) =
1 +

√
1− 2αδjD

2
ln(1 + δjDγ)− δjDγ, (2.85)

we can simply prove L(0) = 0 and dL
dγ
< 0, which results in L(γ) < 0 for γ > 0.

Summarizing the discussion above, we get the final form of the conditions to

guarantee QoS as 
nσ ≤ nµ√

2δjD

wj ≥
2δjDTj(

nµ+
√
n2
µ−2δjDn

2
σ

)
ln

(
1+

δ
j
D
λj

) (2.86)

36

Because increasing R creates a larger variation in the power target, QoS degra-

dation increases with the increase of R. Therefore, when P̄ is fixed, there exists a

maximal value of R, beyond which no choice of weights wj can meet the QoS con-

straints. When P̄ and R are fixed, increasing wj is always beneficial to type-j jobs

because it allows that type of jobs to be processed with more servers. These observa-

tions intuitively explain the existence of an upper limit of nσ and a lower limit of wj

in Eqs. (2.42) (2.43). Based on this, we design an algorithm to solve Eqs. (2.31∼2.41):

1. Start with a fixed value of P̄ .

2. Use binary search to find the maximal R that guarantees QoS. We start with an

initial value for R, and use Eq. (2.43) to compute the minimal weights w∗j . If

the sum of these minimal weights,
∑J

j=1w
∗
j , is smaller than 1, then it means this

value of R is small enough so that there exists a set of weights that meet the QoS

constraints of the jobs, consequently we can increase R. On the other hand, if the

sum
∑J

j=1 w
∗
j is already larger than 1, then it means no weights exist to meet the

QoS constraints, and we should reduce the value of R. After several iterations, we

will arrive at the maximal value of R. This maximal R also minimizes the cost

function for this fixed P̄ because of the negative term −ΠRR in Eq. (2.31). Note

that the third term in Eq. (2.31) related to tracking error is much smaller and also

changes much slower when changing R, compared to the first two terms. With this

set of P̄ , R, and wj, we run one simulation to get the actual tracking error and

use it to compute the cost in Eq. (2.31).

3. Loop through different values of P̄ within an acceptable range of P̄ derived from

Eq. (2.40), and repeat the second step. By comparing the cost from different P̄ ,

we arrive at the global minimum and get the optimal choice of P̄ , R, and wj. In

practice, we apply this algorithm to get the optimal P̄ , R at the granularity of 1%.

37

Figure 2·2: Real-system implementation architecture.

As we mentioned in Section 2.4.3, the coefficients αj are determined empirically.

Therefore, before we solve the optimization problem, we always run a simulation to

determine the coefficients αj by fitting the QoS distributions with Eq. (2.7).

2.4.6 Additional Methods to Regulate Power

In the sections above, we have explained how our policy regulates power consumption

to match the target by job scheduling and server power capping. The flexibility of

our policy allows additional methods to address potential non-ideal situations. Two

typical non-ideal situations include:

Long execution time: When jobs with long execution times are running but the

target power decreases sharply, the data center power may not be able to match the

target because long-running jobs do not finish quickly and server power capping alone

may not be able to reduce a large portion of power. To handle this situation, our policy

can further apply job preemption, which interrupts the long-running jobs temporarily,

and only resume their execution when target power matching is achievable. When

applying job preemption, our policy prioritizes selecting jobs that are least possible to

violate their QoS constraints, and the number of jobs preempted are determined by

38

matching the power target. When the power target increases, resuming preempted

jobs is prioritized before starting new jobs, and jobs closer to QoS violation are

prioritized to resume.

Lack of jobs: When there are not enough jobs waiting in the queues but the

target power is high, the data center power may not be able to match the target as

servers are mostly in idle state due to this lack of jobs. To handle this situation, our

policy can work with a queue of standby jobs and start jobs in this standby-job-queue.

The standby-job-queue can be composed of jobs that have no QoS constraint or have

a relatively loose QoS constraint at the time-scale of days. When other queues are

empty, our policy starts jobs from this standby-job-queue, and the number of jobs

to start is determined by matching the estimated total power consumption with the

power target.

One real-life example for the standby-job-queue is the overrun queue in the Cori

system at the National Energy Research Scientific Computing Center (NERSC) (Na-

tional Energy Research Scientific Computing Center (NERSC), 2020). The overrun

queue allows Cori users running out of their CPU-hour quota to submit jobs to this

queue without monetary costs. Even though the overrun queue is convenient for the

users, there is no guarantee on the waiting time in the overrun queue, and a job there

may also be terminated by the system after running for 4 hours. Another similar

example is the Amazon EC2 Spot Instances which offer spare computing capacity in

the Amazon cloud at a steep discount (Amazon, 2020). Users can enjoy the low price

of this service at the cost of unexpected interruptions: the cloud service provider may

interrupt the service with a warning two minutes in advance whenever there are no

sufficient spare servers.

39

Table 2.2: Characteristics of benchmark applications.

Application Max Processing Min Processing Max Power Min Power
Name Time (T jmax) Time (T jmin) (pj,max) (pj,min)
fs 100.8 s 97.6 s 142 W 137 W
sc 53.8 s 52.6 s 221 W 218 W
bt 143.0 s 108.5 s 279 W 241 W
lu 85.3 s 62.8 s 262 W 231 W
mg 161.2 s 132.6 s 309 W 261 W
sp 108.4 s 99.9 s 290 W 260 W
ft 35.2 s 24.9 s 281 W 229 W

2.5 Simulation and MOC Experiments of QoSG policy

To evaluate our QoSG policy, we run simulations at various scales and conduct

experiments on a real cluster composed of 12 servers from Massachusetts Open

Cloud (MOC).

2.5.1 Simulation and Experiments Setup

In both simulations and real-system experiments, we use computing workloads com-

posed of several types of jobs. These jobs are applications from NAS Parallel Bench-

mark (NPB) (Bailey et al., 1991) and PARSEC Benchmark (Christian, 2011) suites,

which are good representatives of real applications running on high-performance com-

puting data centers. Table 2.2 summarizes the characteristics of the benchmark ap-

plications collected by running them on our servers. Among them, bt, lu, mg, sp,

ft are from the NPB. fs and sc are abbreviations for applications facesim and

streamcluster from the PARSEC suite.

We randomly create workload traces composed of these benchmark applications

for our experiments. For each type-j job, its arrival times are generated as a Poisson

process with an arrival rate λj. This arrival rate is determined by the data center

utilization level η ∈ [0, 1], which represents the average ratio of active servers in the

data center. By default, we assume different types of jobs will occupy the data center

40

equally on average, so λj is determined by:

λjT
j
min =

ηN

J
(j = 1, 2, ..., J). (2.87)

To compare with our new policy, we implement two policies proposed in previous

work, the Tracking-only policy (Chen et al., 2014) and the EnergyQARE policy (Chen

et al., 2019), as baselines.

The Tracking-only policy uses job scheduling and processor power-capping to con-

trol a data center’s power to follow the power target. It only focuses on target tracking,

ignorant of the QoS of jobs. This policy determines P̄ and R heuristically. It selects a

P̄ equal to the estimated average power of the data center according to its utilization

level, i.e., P̄ = ηN
∑J

j=1 pj/J + (1− η)Npidle. And R is selected so that the minimal

(and maximal) possible power targets, P̄ − R (and P̄ + R), are achievable. Thus,

R = min{P̄ −N · pidle, N ·maxj pj − P̄}.

EnergyQARE monitors the tracking error and jobs’ QoS degradation at every mo-

ment. Based on whether the tracking error or the QoS degradation at this moment

is larger, it either focuses entirely on tracking more accurately without concerning

jobs’ QoS, or tries to reduce QoS degradation by running more jobs without concern-

ing the tracking error. The EnergyQARE policy runs simulations with each pair of

(P̄ , R) and selects the best P̄ and R that minimize the cost under the tracking error

constraint.

These two baselines assume the idle servers can transition into sleeping states to

further reduce power. Since the servers in our real system do not support sleeping

states, we implement the baselines without server state transition.

In the following, we describe our simulation method and our real-system imple-

mentation.

Simulation: We implement a simulator in Python. The simulator creates a

41

cluster of servers and keeps track of the servers’ power usage. For each server, we

assume an idle power of pidle = 90 W, and we assume the power usage of jobs follows

the values in Table 2.2. When our policy applies a power cap on a server that is

running a type-j job, we assume the processing time of the job increases linearly.

That is, when the power cap decreases from pj,max to pj,min, the processing time will

linearly increase from T jmin to T jmax.

Real-System Implementation: The cluster used in our experiments is com-

posed of 12 Dell PowerEdge M620 blade servers. Each server has two Intel Xeon

E5-2650 v2 processors. Each server consumes an idle power of pidle = 90 W, and its

power can rise to more than 300 W when running certain applications.

For these servers, we monitor their processor and memory power using the perf

utility (Melo and Carvalho, 2010), and we monitor the total power of a server using

IPMI tool (Laurie et al., 2018). However, the IPMI tool on these servers gives a

running average value at a granularity of 4 Watt, which is too coarse to serve our

purpose. Therefore, we build a power model to get the server power with higher

granularity. This power model takes the processor power Pproc and the memory

power Pmem as input, and gives the total server power Pserver as output, following a

linear relation: Pserver = φ1Pproc + φ2Pmem + φ3.

This power model inherently considers the power contributed by various com-

ponents in a server, including fans, hard drives, motherboards, etc. We run each

benchmark application several times and collect their processor/memory/server power

readings, and fit them with the power model. For our servers, the fitting provides

the following model parameters: φ1 = 1.35, φ2 = 1.32, φ3 = 53.4 W, and this model

gives a server power reading at high granularity with an error of less than 2%.

To apply a power cap on a server, i.e., to add a power limit that the server cannot

exceed, we use the Intel Running Average Power Limit (RAPL) tool (David et al.,

42

0
2
4
6
8

N
u
m

b
e
r

Number of Jobs Submitted

1000

1500

2000

2500

3000

3500

T
o
ta

l
P
o
w

e
r
(W

) Avg. tracking error: 12.9% P: 2340 Watt R: 1181 Watt

Target Power QoSG Policy

0
2
4
6
8

10

N
u
m
b
e
r

Number of Jobs Waiting in the Queue (Excluding Standby Jobs)

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

S
e
rv

e
r Job Execution

Figure 2·3: Experiments on a real 12-server cluster using our QoSG policy.

2010). As RAPL can apply power caps on processors and cannot directly control the

total server power, we build a PID controller to apply power caps on servers. Given

a server power cap, the PID controller recurrently adjusts the processor power caps

by RAPL to let the server power match the cap. On our servers, we explore different

parameters for the PID controller and the choice P = 0.525, I = 0, D = 0 works well.

To experiment on this cluster, we let one server be a “master” node to schedule

jobs and determine power caps following our QoSG policy. The other servers work

as “client” nodes to follow the order of the master and run jobs. Every second, the

master node sends a message about the scheduling decision to each client and receives

a message about their status from each client using the rabbitmq (Chapman et al.,

2018) tool. The architecture of this system is shown in Fig. 2·2.

2.5.2 Evaluation with the Default Setting

We evaluate our QoSG policy through both simulations and real-system experiments.

In our default setting, we use a data center with N = 100 servers (when in simu-

lations), or 12 servers (when in real-system experiments). We assume the workload

arrivals follow Poisson processes that maintain an average data center utilization level

of η = 50%. When using our QoSG policy, by default we let one type of job, ft, to be

43

Table 2.3: Thresholds Qj
thres in the QoS constraints of jobs.

QoS Constraint Level fs sc bt lu mg sp
Tight 0.65 0.60 0.55 0.45 0.40 0.35

Medium 1.3 1.2 1.1 0.9 0.8 0.7
Loose 2.6 2.4 2.2 1.8 1.6 1.4

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

10000

15000

20000

25000

30000

T
o
ta

l
P
o
w
e
r
(W

)

Avg. tracking error: 4.3% P: 20600 Watt R: 10110 Watt

Target Power QoSG Policy

(a) With standby jobs.

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

12000
14000
16000
18000
20000
22000

T
o
ta
l
P
o
w
e
r
(W

)

Avg. tracking error: 11.5% P: 17706 Watt R: 3210 Watt

Target Power QoSG Policy

(b) Without standby jobs.

Figure 2·4: Simulation results for a 100-server data center participating in de-
mand response using our QoSG policy. The actual power consumption (blue) of
the data center follows the target power (red) closely, with a 4.3% average tracking
error.

the standby jobs, and we assign some type-specific QoS constraints in Table 2.3 for the

other 6 types of jobs. By default, we use the Medium-level QoS constraints. When es-

timating the electricity cost using Eq. (2.3), we assume ΠP = ΠR = Πε = 0.1$/kWh.

In our experiments, we use a historical trace of an ISO signal from PJM. The signal

is updated every 4 seconds, and we run each experiment with a length of one hour.

Fig. 2·4(a) shows the result from a one-hour simulation when using the default

setting. This simulation uses the optimal values of the average power P̄ , reserves R,

and weights wj:

P̄ = 20600 W, R = 10111 W, wfs = 12.8%, wsc = 21.2%,

wbt = 12.7%, wlu = 27.1%, wmg = 12.4%, wsp = 14.0%.

44

0.0 0.1 0.2 0.3 0.4
Tracking Error (=|P_actual-P_target|/R)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n
 F
u
n
ct
io
n

Tracking-only

EnergyQARE

QoSG

Figure 2·5: CDFs of tracking error in simulation with the default setting.

These optimal values are derived following the method in Section 2.4.5. Among all

weights, wsc and wlu are larger than the others, because these two types of jobs have

tighter absolute tolerance on the sojourn time, computed by (1 +Qj)T jmin.

In Fig. 2·4(a), the red curve is the target power; the blue curve is the power

consumption when applying our policy. The actual power follows the target very

well, with an average tracking error of 4.3%. The electricity cost for this hour is

$3931. If not participating in RSRs, the electricity cost will be $7292. Therefore,

our policy reduces the cost by 46.1%. The cumulative distribution function (CDF) of

tracking error in Fig. 2·5 show that our policy meets the tracking error constraint in

Eq. (2.4). Fig. 2·6 also show the CDF of job QoS degradation, which meets the QoS

constraint in Eq. (2.5).

Note that the use of standby jobs is not the main reason for the 46.1% cost

reduction, because the energy consumed by standby jobs only occupies 14.2% of all

energy consumed in this hour. When there are no standby jobs at all, data centers can

still apply our policy, and Fig. 2·4(b) shows the simulation result. In this case, the

cost reduction drops to 14.4%. That is because a smaller P̄ is needed to guarantee

good signal tracking, and a smaller R is also needed to reduce the power target’s

variation so as to guarantee job QoS.

45

0.0 0.5 1.0 1.5 2.0 2.5 3.0
QoS Degradation of fs jobs

0.0

0.2

0.4

0.6

0.8

1.0
C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n
 F
u
n
ct
io
n

Tracking-only

EnergyQARE

QoSG

0.0 0.5 1.0 1.5 2.0 2.5 3.0
QoS Degradation of sc jobs

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n
 F
u
n
ct
io
n

Tracking-only

EnergyQARE

QoSG

0.0 0.5 1.0 1.5 2.0 2.5 3.0
QoS Degradation of bt jobs

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n
 F
u
n
ct
io
n

Tracking-only

EnergyQARE

QoSG

0.0 0.5 1.0 1.5 2.0 2.5 3.0
QoS Degradation of lu jobs

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n
 F
u
n
ct
io
n

Tracking-only

EnergyQARE

QoSG

0.0 0.5 1.0 1.5 2.0 2.5 3.0
QoS Degradation of mg jobs

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n
 F
u
n
ct
io
n

Tracking-only

EnergyQARE

QoSG

0.0 0.5 1.0 1.5 2.0 2.5 3.0
QoS Degradation of sp jobs

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n
 F
u
n
ct
io
n

Tracking-only

EnergyQARE

QoSG

Figure 2·6: Cumulative distribution functions of the QoS degradation of each type
of jobs in simulation. This simulation uses the default setting with 100 servers.
The green dashed lines are the thresholds in the QoS constraints in Eq. (2.5) and
Table 2.3. Our QoSG policy guarantees that all job types meet their constraints.
The Tracking-only policy and the EnergyQARE policy violate the QoS constraints
in this case.

Fig. 2·5 also compares our QoSG policy (with standby jobs) with the two baselines:

the Tracking-only policy and the EnergyQARE policy. We compare their CDFs for

the tracking error and sp jobs’ QoS degradation. Because the Tracking-only policy

only focuses on tracking and does not consider job QoS, it leads to the smallest

tracking error but the largest QoS degradation. The EnergyQARE policy balances

tracking and QoS, so it reduces the QoS degradation compared to the Tracking-only

policy. However, as their policy is designed heuristically without any theoretically-

proven guarantees, QoS degradation still violates the constraints in this case. Even

if we enhance the EnergyQARE policy by allowing it to have a queue of standby

jobs, the QoS constraints of some job types are still violated because that policy

does not assign optimally-determined weights to different queues and, thus, cannot

balance different types of jobs well. The power-time curves of these baseline policies

are shown in Fig. 2·7.

46

0
10
20
30
40
50

N
u
m

b
e
r Number of Jobs Submitted

8000
10000
12000
14000
16000
18000
20000
22000
24000

T
o
ta

l
P
o
w

e
r
(W

)

Avg. tracking error: 2.4%

Target Power Tracking-only Policy

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

0
50

100
150
200

N
u
m
b
e
r Number of Jobs Waiting in the Queue

(a) The Tracking-only policy

0
10
20
30
40
50

N
u
m

b
e
r Number of Jobs Submitted

8000
10000
12000
14000
16000
18000
20000
22000
24000

T
o
ta

l
P
o
w

e
r

(W
)

Avg. tracking error: 7.1%

Target Power EnergyQARE Policy

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

0
50

100
150
200

N
u
m
b
e
r Number of Jobs Waiting in the Queue

(b) The EnergyQARE policy

Figure 2·7: Power-time curves of the simulations using the two baseline policies
with the default setting. The Tracking-only policy provides good tracking perfor-
mance, with an average tracking error of 2.4%. The EnergyQARE policy consumes
more power than the target at some places (e.g., t = 1300) in order to reduce the
QoS degradation of the jobs. Therefore, EnergyQARE leads to smaller number of
jobs waiting in the queues, at the cost of larger tracking error than Tracking-only.

47

0.0 0.1 0.2 0.3 0.4
Tracking Error (=|P_actual-P_target|/R)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n
 F
u
n
ct
io
n

Tracking-only

EnergyQARE

QoSG

Figure 2·8: CDFs of tracking error in real experiments with the default setting.

We evaluate our proposed policy and the two baselines on a real cluster using

the default setting. The cluster has 12 servers including 1 “master” node and 11

“client” nodes. The results using our QoSG policy are shown in Fig. 2·3. The number

of jobs submitted to the data center in each time interval is displayed as the green

bars. The grey rectangles represent the execution (from start to end) of a job on a

certain server. We see that, even with this small cluster, our QoSG policy enables

this cluster to participate in RSRs and follow the power target well. The yellow

curve shows the number of jobs (excluding standby jobs) waiting in the queues at

every moment. When the target power drops (e.g., at t = 400 s), the number of

active servers is reduced in order to track the target, so the number of waiting jobs

increases. At a few places (e.g., at t = 100), the real power does not reach the target.

That is because at these moments, all servers are running, so the total power cannot

be further increased by starting more jobs. Since this mismatch seldom happens, our

policy still meets the tracking error constraint.

For these real-system experiments, Fig. 2·8 shows the CDFs of the tracking error

and Fig. 2·9 shows the QoS degradation of jobs. They both meet the constraints

for QoSG, but QoS constraints are not met by using the other policies. The cost

reduction using the QoSG policy is 42%, which is 38% when using Tracking-only, and

48

0.0 0.5 1.0 1.5 2.0 2.5 3.0
QoS Degradation of fs jobs

0.0

0.2

0.4

0.6

0.8

1.0
C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n
 F
u
n
ct
io
n

Tracking-only

EnergyQARE

QoSG

0.0 0.5 1.0 1.5 2.0 2.5 3.0
QoS Degradation of sc jobs

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n
 F
u
n
ct
io
n

Tracking-only

EnergyQARE

QoSG

0.0 0.5 1.0 1.5 2.0 2.5 3.0
QoS Degradation of bt jobs

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n
 F
u
n
ct
io
n

Tracking-only

EnergyQARE

QoSG

0.0 0.5 1.0 1.5 2.0 2.5 3.0
QoS Degradation of lu jobs

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n
 F
u
n
ct
io
n

Tracking-only

EnergyQARE

QoSG

0.0 0.5 1.0 1.5 2.0 2.5 3.0
QoS Degradation of mg jobs

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n
 F
u
n
ct
io
n

Tracking-only

EnergyQARE

QoSG

0.0 0.5 1.0 1.5 2.0 2.5 3.0
QoS Degradation of sp jobs

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 D
is
tr
ib
u
ti
o
n
 F
u
n
ct
io
n

Tracking-only

EnergyQARE

QoSG

Figure 2·9: Cumulative distribution functions of the QoS degradation of each type
of jobs in a real-system experiment with 12 servers. Our QoSG policy guarantees
that all job types meet their constraints; meanwhile, the baseline policies cannot.

37% when using EnergyQARE. Compared to simulation, real-system experiments

show higher tracking error because, in reality there are variations in the power usage

of a job, especially at a job’s beginning and completion stage. Fig. 2·10 shows the

power-time curves for the baselines. We also simulate the experiment with 12 servers,

and the difference between the power consumption in our simulator and that in the

real-system is only 5%, which indicates a reasonable accuracy for our simulator.

2.5.3 Comparison of Different Settings

Using simulations, we evaluate the QoSG policy with different data center sizes.

Fig. 2·11 shows the optimal P̄ , R values, the cost reduction, and the ratio of energy

consumed by standby jobs. As we increase the size from 20 to 2500, the cost reduction

remains above 45%, which shows our policy scales well with data center size.

Fig. 2·12 compares the results when using different QoS constraint levels in Ta-

ble 2.3. Because tight QoS constraints are easier to be violated, more conservative

selection of P̄ and R is required. Therefore, in Fig. 2·12, tighter QoS constraints lead

49

0
2
4
6
8

N
u

m
b

e
r

Number of Jobs Submitted

1000
1200
1400
1600
1800
2000
2200
2400
2600

T
o

ta
l

P
o

w
e

r
(W

) Avg. tracking error: 13.5%

Target Power Tracking-only Policy

0
5

10
15
20

N
u

m
b

e
r

Number of Jobs Waiting in the Queue

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

S
e

rv
e

r Job Execution

(a) The Tracking-only policy

0
2
4
6
8

N
u

m
b

e
r

Number of Jobs Submitted

1000
1200
1400
1600
1800
2000
2200
2400
2600

T
o

ta
l

P
o

w
e

r
(W

) Avg. tracking error: 16.0%

Target Power EnergyQARE Policy

0
5

10
15
20

N
u

m
b

e
r

Number of Jobs Waiting in the Queue

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

S
e

rv
e

r Job Execution

(b) The EnergyQARE policy

Figure 2·10: Power-time curves of the real-system experiments using the two
baseline policies with the default setting.

20 100 500 2500
Data Center Size

103

104

105

106

W
a
tt

P R

20 100 500 2500
Data Center Size

0%

20%

40%

60%

80%

100%

P
e
rc
e
n
ta
g
e

45.1%

19.5%

46.1%

14.2%

48.9%

11.8%

49.3%

10.5%

Cost Reduction

Energy for Standby Jobs

Figure 2·11: Results for different data center sizes.

50

Tight Medium Loose
QoS Constraints

0

5000

10000

15000

20000

25000

W
a
tt

P R

Tight Medium Loose
QoS Constraints

0%

20%

40%

60%

80%

100%

P
e
rc
e
n
ta
g
e

32.9%

16.0%

46.1%

14.2%

46.9%

8.1%

Cost Reduction

Energy for Standby Jobs

Figure 2·12: Results for different QoS constraint levels.

to larger P̄ , smaller cost reduction, and more standby jobs.

We evaluate the influence of data center utilization level by simulations with the

utilization level η = 25%, 50% (the default), or 75%. Fig. 2·14 shows the optimal P̄ ,

R, the cost reduction, and the percentage of energy consumed by standby jobs. Their

power-time curves are in Fig. 2·13. As the utilization level increases, the flexibility

of data centers in power regulation decreases because more power becomes necessary

in order to guarantee QoS. Therefore, we see the cost reduction drops to 25.1% when

η = 75%.

In previous experiments, we assume different types of jobs are balanced in the

workload, i.e., they occupy the data center equally on average (see Eq. (2.87)). We

evaluate the impact of this factor by comparing two unbalanced workload traces: in

trace W1, the jobs with longer processing time (bt, mg, sp) have higher occupancy; in

trace W3, the jobs with shorter processing time (fs, sc, lu) have higher occupancy.

W2 is the default balanced trace. To be specific, the job arrival rates in these traces

satisfy:

[W1] λ1T1 : λ2T2 : λ3T3 : λ4T4 : λ5T5 : λ6T6 = 1 : 1 : 3 : 1 : 3 : 3

[W2] λ1T1 : λ2T2 : λ3T3 : λ4T4 : λ5T5 : λ6T6 = 1 : 1 : 1 : 1 : 1 : 1

[W3] λ1T1 : λ2T2 : λ3T3 : λ4T4 : λ5T5 : λ6T6 = 3 : 3 : 1 : 3 : 1 : 1

51

0
5

10
15
20
25

N
u
m

b
e
r Number of Jobs Submitted

10000

15000

20000

25000

30000

T
o
ta

l
P
o
w

e
r
(W

)

Avg. tracking error: 4.1% P: 19909 Watt R: 10833 Watt

Target Power QoSG Policy

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

0
20
40
60
80

100

N
u
m
b
e
r Number of Jobs Waiting in the Queue (Excluding Standby Jobs)

(a) At 25% utilization level

0
10
20
30
40
50

N
u
m

b
e
r Number of Jobs Submitted

10000

15000

20000

25000

30000

T
o
ta

l
P
o
w

e
r

(W
)

Avg. tracking error: 4.3% P: 20600 Watt R: 10110 Watt

Target Power QoSG Policy

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

0
20
40
60
80

100

N
u
m
b
e
r Number of Jobs Waiting in the Queue (Excluding Standby Jobs)

(b) At 50% utilization level

0
20
40
60
80

100

N
u
m

b
e
r Number of Jobs Submitted

16000

18000

20000

22000

24000

26000

28000

30000

T
o
ta

l
P
o
w

e
r
(W

) Avg. tracking error: 10.2% P: 23772 Watt R: 7221 Watt

Target Power QoSG Policy

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

0
20
40
60
80

100

N
u
m
b
e
r Number of Jobs Waiting in the Queue (Excluding Standby Jobs)

(c) At 75% utilization level

Figure 2·13: Power-time curves for simulations using our QoSG policy at different
data center utilization levels. Our policy selects different optimal values for P̄ and
R according the utilization level.

52

25% 50% 75%
Data Center Utilization Level

0

5000

10000

15000

20000

25000

W
a
tt

P R

25% 50% 75%
Data Center Utilization Level

0%

20%

40%

60%

80%

100%

P
e
rc

e
n
ta

g
e

51.3%

31.1%

46.1%

14.2%
25.1%

7.0%

Cost Reduction

Energy for Standby Jobs

Figure 2·14: Results for different data center utilization levels.

Trace W1

fs

8%

sc

12%

bt
20%

lu

15%

mg
21%

sp

24%

Trace W2

fs

13%

sc 20%

bt

13%

lu

26%

mg
13%

sp

15%

Trace W3

fs

18%

sc
32%bt

7%

lu
25%

mg
6% sp

12%

Figure 2·15: Optimal weights wj in traces W1, W2, W3.

Here, indices 1 to 6 refer to fs, sc, bt, lu, mg, sp. Fig. 2·15 shows the optimal weights

wj when using these workload traces. We see that job types with higher occupancy

tend to have higher weights. For example, from W1 to W3, the occupancy of fs jobs

increases, so their weight increases from 8% to 18%.

We further consider the situation when there are only two types of jobs (including

one type of standby jobs). Fig. 2·16 compares the simulation results for workloads of

different compositions. Because the power usage of fs jobs is the smallest among all

jobs in Table 2.2, there is not much room for power regulation, so the cost reduction

in this case is only 21.3%. On the other hand, for bt jobs whose power usage is much

larger, the cost reduction becomes 39.8%.

In all the results above, we use the same one-hour ISO signals from PJM. To check

the robustness against different signals, in Fig. 2·17, we show simulation results (with

53

Only fs Only bt 6 types
Workload

0

5000

10000

15000

20000

25000
W

a
tt

P R

Only fs Only bt 6 types
Workload

0%

20%

40%

60%

80%

100%

P
e
rc

e
n
ta

g
e

21.3%

0.8%

39.8%

3.0%

46.1%

14.2%

Cost Reduction

Energy for Standby Jobs

Figure 2·16: Comparing workloads of different compositions.

the same parameters as Fig. 2·4) using 4 different one-hour samples of the PJM ISO

signals. The actual power matches the target well in general. We have verified that

different signals lead to similar tracking error, QoS degradation, and cost reduction.

2.6 The Adaptive QoS-Assurance (AQA) policy

The work with QoSG policy suffers from the following problems: (1) The policy

only applies to single-node jobs. (2) Some empirical paramters used in the pol-

icy to guarantee job QoS are fit from a single run of simulation, which may suffer

from empirical errors. (3) The experiment is done on a small cluster with a limited

number of workloads. To solve these problems, we further propose the Adaptive-

QoS-Assurance (AQA) policy. The AQA policy has the following improvements: (1)

Instead of considering only single-node jobs, the AQA policy now allows parallel ap-

plications that run on multiple nodes. (2) The AQA policy adaptively optimizes the

bidding parameters and the weight parameters used by the policy, in contrast to es-

timating the optimal parameters based on a single simulation. (3) Compared to our

earlier experiments on a 12-server cluster with a limited number of workloads, the

following work includes real-system experiments on a 36-server cluster with a broad

set of workload settings.

In this section, we first introduce our data center model and give an overview of

our AQA policy. Next, we explain how our AQA policy regulates the total power

54

10000

15000

20000

25000

30000

35000

T
o

ta
l
P
o
w

e
r

(W
) Avg. tracking error: 4.4%

Target Power QoSG Policy

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

0
10
20
30
40
50

N
u

m
b

e
r

Number of Jobs Waiting in the Queue (Excluding Standby Jobs)

(a) ISO signal sample 1

10000

15000

20000

25000

30000

35000

T
o
ta

l
P
o
w

e
r

(W
) Avg. tracking error: 6.5%

Target Power QoSG Policy

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

0
20
40
60
80

100

N
u

m
b

e
r

Number of Jobs Waiting in the Queue (Excluding Standby Jobs)

(b) ISO signal sample 2

10000

15000

20000

25000

30000

35000

T
o
ta

l
P
o
w

e
r

(W
) Avg. tracking error: 3.5%

Target Power QoSG Policy

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

0
50
100
150
200

N
u
m
b
e
r

Number of Jobs Waiting in the Queue (Excluding Standby Jobs)

(c) ISO signal sample 3

10000

15000

20000

25000

30000

35000

T
o
ta

l
P
o
w

e
r

(W
) Avg. tracking error: 4.3%

Target Power QoSG Policy

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

0
20
40
60
80

100

N
u

m
b

e
r

Number of Jobs Waiting in the Queue (Excluding Standby Jobs)

(d) ISO signal sample 4

Figure 2·17: Results using different one-hour samples of the ISO signal. These
results demonstrate that our result is robust to the behavior of ISO signal. In all
these simulations, the average tracking error is less than 7%. Our QoSG policy
meets the tracking error constraint and the job QoS constraints.

55

Figure 2·18: The runtime part and the parameter selection part of our AQA
policy.

to track the target by job scheduling and server power capping. Then, we explain

how our policy adaptively finds the optimal bidding parameters (P̄ , R) and weight

parameters (wj), when participating in the regulation service markets.

2.6.1 An Overview of the AQA Policy

To provide QoS guarantees to each type of job, we partition the active servers to job

types following the Generalized Processor Sharing (GPS) algorithm (Parekh and Gal-

lager, 1993), discussed in Section 2.4.2. According to the algorithm, the number of ac-

tive servers allocated for each job type is proportional to a set of non-negative weights,

wj (with
∑J

j=1 wj = 1). As we follow the GPS algorithm, a queueing-theoretic result

guarantees that the delay in each queue meets QoS constraints (Paschalidis, 1999;

Bertsimas et al., 1999).

When applying our policy at runtime, at the beginning of every cycle (one cy-

cle is one second in our experiments), the policy adjusts the total number of servers

expected to be active in order to match the total power consumption with the tar-

56

get power. Next, the number of servers expected to be active for each job type is

determined following the GPS algorithm. Then, for each job type, if the number of

active servers in this group needs to increase to meet the expectation, our policy will

activate idle servers to run some queued jobs of this type if there are any. On the

other hand, if the number of active servers in this group needs to decrease to meet the

expectation, our policy will reduce these servers’ power cap instead of deactivating

them because we assume no job interruption. These procedures form the runtime

policy in Fig. 2·18.

The key to guarantee QoS and simultaneously reduce monetary cost is to select

optimal bidding parameters (P̄ , R) and weight parameters (wj). Although bidding for

a larger average power P̄ is more beneficial to guarantee QoS because a higher power

target (as a result of a larger P̄) allows more servers to run, larger P̄ also increases the

monetary cost. The weight parameters (wj) need to be well-tuned so that a job type

that is harder to meet its QoS constraint will take a larger weight and consequently,

be able to access more servers. Our policy determines the optimal parameters by

running simulations and applying the gradient descent on a cost function. That cost

function includes both the monetary cost and an additional term penalizing QoS

violation. These procedures are depicted in Fig. 2·18.

2.6.2 Job Scheduling and Power Capping in AQA

Our AQA policy adjusts a data center’s power consumption at runtime to match the

power target Ptarget by job scheduling and server power capping strategies, as shown

in Fig. 2·19(a). The parameters used in the following are listed in Table 2.1.

In order to provide guarantees on job QoS, we schedule J different queues of jobs

following the GPS algorithm. To match power target Ptarget(t) at time t, our policy

first determines the total number of active servers n(t). Then, the n(t) active servers

are partitioned for the J queues according to their weights wj following the GPS

57

(a) Job scheduling and server power capping at
runtime. (b) Optimal selection of bidding

and weight parameters.

Figure 2·19: The two components of our AQA policy.

58

algorithm. As a result, we get the number of active servers for the jth queue (i.e., for

jth-type jobs), nj. This nj equals to n(t)wj if all queues are non-empty, and larger

if not. Next, from nj, we get the number of jth-type jobs that should be running as

nj/mj, where mj is the number of servers required for running each jth-type job3.

If nj/mj is smaller than the current number of running jobs of the jth type, we

deduct nj/mj from the number of jth-type jobs that are running, and we arrive at

the number of jth-type jobs that should be scheduled to start at this moment. On

the other hand, if nj/mj is larger than the current number of running jobs of the jth

type, since we do not want to terminate jobs before they finish, we reduce data center

power by reducing server power caps of all active servers, which is discussed in the

following paragraphs. Whenever reducing the server power caps is not necessary, our

policy always let servers run without power caps.

From the policy described above, we see that the total number of active servers

n(t) at time t should be determined by matching the target power with the data

center’s power consumption, i.e.:

Ptarget = P̄ + y(t)R = (N − n(t))pidle +
J∑
j=1

njpj,

which is equivalent to

n(t) =
P̄ + y(t)R− pidleN(∑J

j=1 wjpj

)
− pidle

. (2.88)

Here, N is the total number of servers in the data center. pidle is the idle server power,

and pj (also denoted as pj,max later) is the power for running a jth-type job without

power capping. We have also made an approximation nj = n(t)wj.

Our AQA policy applies server power capping only in situations when the already-

running jobs are consuming more power than the target. When that happens, our

policy reduces the power cap on all the active servers by the same ratio ω ∈ [0, 1] to
3We call a job as a single-server job if mj = 1, and a multi-server job or parallel job if mj > 1.

59

ensure fairness. To be more specific, for a jth-type job whose power consumption is

pj,max and pj,min when under the highest/lowest server power cap, we apply a server

power cap that makes the job running at power pj,cap defined by the equation

ω =
pj,cap − pj,min
pj,max − pj,min

.

The ratio ω is determined by matching the target power and the actual consumption:

Ptarget = (N − n(t))pidle +
J∑
j=1

njpj,cap.

2.6.3 Bidding and Weight Parameter Selection in AQA

Our policy determines the optimal selection of bidding parameters P̄ , R, and weights

wj by solving the following optimization problem:

min
P̄ ,R,wj

(
ΠP P̄ − ΠRR + ΠεRε̄

)
× 1h (2.89)

subject to Prob[Qj ≥ Qj
thres] ≤ δj, j = 1, 2, ... (2.90)

J∑
j=1

wj = 1, P̄ , R, wj > 0. (2.91)

We first simplify the QoS constraints in Eq. (2.90) using the queueing-theoretical

result in Sec. 2.4.3:

Prob[Qj ≥ Qj
thres] ≤ δj (2.92)

⇔ Prob

[
T jwait + T jproc − T

j
min

T jmin
≥ Qj

thres

]
≤ δj (2.93)

⇔ Prob[T jwait ≥ Qj
thresT

j
min] ≤ δj. (2.94)

Here, Eq. (2.93) is transformed into Eq. (2.94) by approximation since the actual

processing time T jproc is usually close to the minimum T jmin. Combining Eq. (2.7) with

60

Eq. (2.94) leads to

⇔ Prob[Dj ≥ Dj
max] = αje

−Djmaxθ∗j ≤ δj (2.95)

⇔ θ∗j ≥ δjD = − 1

Dj
max

ln

(
δj

αj

)
. (2.96)

Converting Eq. (2.94) into Eq. (2.95) is merely a change of notation in order to match

the notation in Eq. (2.7).

To further simplify Eq. (2.96) using Eq. (2.8), we quantify the statistical properties

of job arrival and power target. Because different types of jobs have different power

consumption and processing times, a job cannot be simply regarded as a “request”

in the original GPS algorithm explained in Sec. 2.4.2. Instead, we convert jobs and

servers into the unit of “amount of service”. A jth-type job, using mj servers to

run and with a minimum processing time of T jmin, is considered as requiring mjT
j
min

amount of service. As a result, if we assume the job arrival for this queue follows a

Poisson process with parameter λj (i.e., the average number of jth-type jobs arriving

per unit time), then, the amount of service injected to the jth queue per unit time,

Aj(t), follows a Poisson process. The log moment-generating function for Aj(t) is

ΛAj(θ) = λj(e
θmjTj − 1). (2.97)

Similarly, n(t) active servers at time t are considered as having a processing ca-

pability of B(t) = n(t) amount of service per unit time. Since the matching of power

target with data center power gives us the relation Eq. (2.88), the statistical prop-

erty of n(t) depends on the property of the signal y(t). Regulation service programs

require the average value over a long time ȳ to be close to 0. From the ISO signal sam-

ple we have, we empirically determine that the signal y(t) generally follows a normal

distribution, whose standard deviation is estimated as yσ = 0.40. As a consequence,

61

n(t) follows a normal distribution with an average value

nµ =
P̄ − pidleN(∑J
j=1wjpj

)
− pidle

, (2.98)

and a standard deviation

nσ =
yσR(∑J

j=1 wjpj

)
− pidle

. (2.99)

Thus, the log moment-generating function of B(t) is

ΛB(θ) = nµθ +
1

2
n2
σθ

2. (2.100)

Eqs. (2.8)(2.97)(2.100) provide us the θ∗j defined in Eq. (2.96), and as we have seen,

satisfying Eq. (2.96) provides the QoS assurance we need.

Although θ∗j can be derived from the statistic properties of job arrival and ISO

signal, the coefficient αj can only be estimated empirically. In the QoSG policy, we

obtained a fixed estimate of this coefficient by running one experiment and fitted it

with the observed QoS-degradation probability using Eq. (2.95). However, because

the fixed estimate of αj using a specific set of parameters (P̄ , R, and wj) could

have errors at other P̄ , R, wj values, in the following, we improve this procedure by

adaptively adjusting the estimation of αj while optimizing the cost function using

gradient descent.

In order to apply the gradient descent optimization, we make the QoS-assurance

constraint (Eq. (2.90)) as a part of the cost function (Eq. (2.89)), and we estimate

the cost of tracking error as Cerror. Then, the cost function becomes

C =
(
ΠP P̄ − ΠRR

)
H + Cerror

+β
∑
j

SoftPlus
(
ρ
(
Prob[Qj −Qj

thres]− δ
j
))
. (2.101)

62

Here, H represents 1 hour. Function SoftPlus(x) is defined as ln(1 + ex), which is a

smooth approximation of the ramp function max(0, x). Therefore, the QoS-related

term in Eq. (2.101) is close to zero when the QoS constraint is met, and positive

when violated. Parameters β and ρ control whether the QoS constraints are less or

more strict. Although larger β and ρ result in more strict constraints, they also make

the surface of cost function steeper, and consequently, finding the optimum becomes

harder.

To calculate the derivatives of the tracking error cost, we need an analytical esti-

mation of the tracking error cost:

Cerror = ΠεRε̄H (2.102)

= Πε

H∫
0

|Ptarget(t)− Pactual(t)|dt (2.103)

' Πε

H∫
0

(P̄ + y(t)R− Pactual(t))dt (2.104)

= Πε
[
P̄H − Eactual

]
(2.105)

' ΠεH

[
P̄ − pidleN −

∑
j

λjmjTj (pj − pidle)

]
. (2.106)

Here, H again represents 1 hour. Eq. (2.102) is the definition of tracking error cost,

and Eq. (2.103) is from the definition of the average tracking error. Eq. (2.104)

removes the absolute value sign because this tracking error term is significant only

when P̄ + y(t)R � Pactual(t), and the other case where P̄ + y(t)R � Pactual(t) is

precluded by the QoS-related term in Eq. (2.101) because a small P̄ already violates

QoS significantly. In Eq. (2.105), Eactual represents the actual energy consumption in

that 1 hour, which is estimated in Eq. (2.106) following our assumption of job arrivals

according to Poisson processes.

Applying Eqs. (2.95)(2.97-2.101)(2.106), we can compute the derivatives of the

63

cost function, ∂C
∂P̄

, ∂C
∂R

, ∂C
∂wj

, to be used in gradient descent optimization. The following

derivations show how we compute these derivatives:

We show the derivation of ∂C
∂P̄

. The other derivatives including ∂C
∂R

and ∂C
∂wj

can be

derived similarly.

Starting with Eq. (2.101), we have

∂C

∂P̄
= ΠPH + ΠεH +

β
∑
j

(
eρ(Prob[Qj−Qjthres]−δ

j)

1 + eρ(Prob[Qj−Qjthres]−δj)
×

ρ
∂

∂P̄
Prob[Qj −Qj

thres]

)
. (2.107)

Using Eq. (2.95), we obtain

∂

∂P̄
Prob[Qj −Qj

thres] = αje
−Djmaxθ∗j (−Dj

max)
∂θ∗j
∂P̄

. (2.108)

To calculate the derivatives of θ∗j , we first calculate θ∗j by plugging Eq. (2.100) into

Eq. (2.8), which yields

sup
θ≥0, ΛGPS,j(θ)<0

−ΛB(−θwj) (2.109)

= sup
θ≥0, ΛGPS,j(θ)<0

−nµ(−θwj)−
1

2
n2
σ(−θwj)2

= sup
θ≥0, ΛGPS,j(θ)<0

−1

2
n2
σw

2
j

(
θ − nµ

n2
σwj

)2

+
n2
µ

2n2
σ

. (2.110)

Here, whether the maximum point n2
µ

2n2
σ
of the above quadratic function can be reached

depends on whether θ = nµ
n2
σwj

meets the conditions θ ≥ 0, ΛGPS,j(θ) < 0.

To evaluate these conditions, we plug Eqs. (2.97)(2.100) into Eq. (2.9) and obtain

ΛGPS,j(θ) = λj(e
θmjTj − 1)− nµθwj +

1

2
n2
σθ

2w2
j .

64

As the second-order derivative Λ′′GPS,j(θ) is always positive, the function ΛGPS,j(θ) is

convex. Since 0 is a root of ΛGPS,j(θ), the other root will be positive if and only if

Λ′GPS,j(θ)
∣∣
θ=0

< 0 (2.111)

⇔ wj >
λjmjTj
nµ

(2.112)

⇔ nµwj > λjmjTj. (2.113)

Equation (2.113) is actually the requirement that the average computing service pro-

vided to the j-th queue should be larger than the average amount of work submitted

to this queue. Thus, we can safely assume Eq. (2.113) is satisfied, otherwise the queue

length will diverge and the QoS constraint will be violated. Therefore, there exists a

positive root for ΛGPS,j(θ), and whether θ = nµ
n2
σwj

meets the conditions ΛGPS,j(θ) < 0

can be converted to

ΛGPS,j

(
nµ
n2
σwj

)
< 0

⇔ λj(e
nµmjTj

n2σwj − 1) <
n2
µ

2n2
σ

⇔ wj >
nµmjTj

n2
σ ln

(
1 +

n2
µ

2n2
σλj

) . (2.114)

In the following, we separately discuss the two cases depending on whether Eq. (2.114)

is satisfied or not.

Case I: If Eq. (2.114) holds, from Eq. (2.110) we get

θ∗j = sup
θ≥0, ΛGPS,j(θ)<0

−ΛB(−θwj) =
n2
µ

2n2
σ

. (2.115)

From Eq. (2.98), we get

∂nµ
∂P̄

=
1(∑J

j=1 wjpj

)
− pidle

. (2.116)

65

To summarize, in Case I, combining Eqs. (2.107)(2.108)(2.115)(2.116) provides us the

derivative ∂C
∂P̄

we need.

Case II: If Eq. (2.114) does not hold, i.e.,

wj ≤
nµmjTj

n2
σ ln

(
1 +

n2
µ

2n2
σλj

) (2.117)

assuming Θj is the positive root of ΛGPS,j(θ), i.e.

ΛGPS,j(Θj) = ΛAj(Θj) + ΛB(−Θjwj) = 0 (2.118)

then the supremum in Eq. (2.109) is achieved at Θj, i.e.,

θ∗j = sup
θ≥0, ΛGPS,j(θ)<0

−ΛB(−θwj)

= −ΛB(−Θjwj)

= ΛAj(Θj)

= λj(e
ΘjmjTj − 1).

Then, we have
∂θ∗j
∂P̄

= λje
ΘjmjTjmjTj

∂Θj

∂P̄
. (2.119)

To calculate ∂Θj
∂P̄

, we take derivative ∂
∂P̄

on both sides of Eq. (2.118), and after re-

arrangement, we get

∂Θj

∂P̄
=

∂nµ
∂P̄

Θjwj − nσ ∂nσ∂P̄
Θ2
jw

2
j

λjeΘjmjTjmjTj − nµwj + n2
σΘjw2

j

. (2.120)

From Eq. (2.99), we have
∂nσ
∂P̄

= 0. (2.121)

To summarize, in Case II, combining Eqs. (2.107)(2.108)(2.116)(2.118-2.121) provides

us the derivative ∂C
∂P̄

we need.

66

Figure 2·19(b) shows the algorithm we apply to perform the optimization. The

algorithm starts with a set of initial values for parameters P̄ , R, wj, and αj, and

runs a one-hour4 simulation. Next, parameter αj is estimated for each jobtype j

by fitting the QoS degradation curve with Eq. (2.95). Then, we calculate the cost

function with its derivatives, and update P̄ , R, wj through gradient descent5. These

new parameters are fed into simulation again and we iterate over the process above.

In this optimization approach, the time complexity of performing the theoretical

calculations is constant irrespective of the data center size, and in our experiments,

the time spent on theoretical calculations is negligible (less than 1 second). The time

for conducting simulation depends on the data center size. In our experiments, this

optimization approach always finds a solution meeting all constraints in less than 200

iterations, which takes no more than a few minutes even for a large data center with

10k nodes.

2.7 Experiments of AQA policy on MGHPCC Servers

We implement our AQA policy and evaluate it using both simulation and real-system

experiments. The architecture of our implementation follows the same design as

in Fig. 2·2. Among all the servers, we choose one server to be the “master” that

receives the ISO signal, applies our AQA policy, and controls job scheduling and

power capping. The other servers are called “clients” and they communicate with the

master frequently (once per second in our experiments) to receive a control message

and send their job/power status. We implement the communication between the

master and clients using rabbitmq (Chapman et al., 2018).

A controller process in each client server executes the power capping of the server.
4Simulating a one-hour running time of the data center takes 5 seconds using our simulator.
5Because there is a constraint

∑
j wj = 1 in our optimization problem, we apply gradient descent

with projection.

67

It reads the power consumption from sensors and accordingly sets a cap on the CPU

power to match the control message sent from the master. In our system, that

controller process is a PID controller with P = 0.4, I = 0, D = 0. We determine

these parameters by running benchmark applications under a changing powercap and

selecting the parameters that shows the quickest response and the best stability.

2.7.1 System Setup

We use 36 servers from the Boston University Shared Computing Cluster (BU-SCC)

that are physically located at the Massachusetts Green High Performance Computing

Center (MGHPCC). Each server has two Intel Xeon Gold 6132 processors. Each

processor has 14 cores, and its thermal design power is 140 W. When conducting

experiments on this cluster, we use one server as the master, and the other 35 as

clients.

We use the Linux perf tool (Melo and Carvalho, 2010) to read the power of

CPU and memory in a server. We also use the IPMI tool (Laurie et al., 2018) to

read a entire server’s power, which includes the power from CPU, memory, disk,

fan, network interface, motherboard, etc. Because the IPMI reading is a running-

average value of the server power and it has a large granularity of 4 W, we fit a

power model based on the perf reading to obtain the real-time server power and

increase the granularity. We fit the power model by running benchmark applications

and collecting the CPU/memory power (Pproc and Pmem) from perf and server power

(Pserver) from IPMI. We find that a linear model, Pserver = φ1Pproc + φ2Pmem + φ3, is

accurate enough for our purpose, and we empirically determine φ1 = 1.29, φ2 = 1.63,

φ3 = 44.0 W in our experiments.

68

T
ab

le
2.
4:

A
pp

lic
at
io
ns

an
d

w
or
kl
oa

ds
us
ed

in
ev
al
ua

ti
on

.
T
he

m
ea
ni
ng

of
ap

pl
ic
at
io
n

na
m
e
is

sh
ow

n
by

th
is

ex
am

pl
e:

bt
.C

.1
6
m
ea
ns

ru
nn

in
g
be

nc
hm

ar
k
bt

w
it
h
in
pu

t
C

an
d
w
it
h
16

th
re
ad

s.
H
er
e,
m
j
is

th
e
si
ze

(n
um

be
r

of
se
rv
er
s
us
ed

to
ru
n)
.
T
m
in

(T
m
a
x
)
is

th
e
m
in
im

um
(m

ax
im

um
)
pr
oc
es
si
ng

ti
m
e
in

se
co
nd

s
an

d
p m

a
x
(p
m
in
)
is

th
e

co
rr
es
po

nd
in
g
po

w
er

co
ns
um

pt
io
n
of

a
se
rv
er

in
W
at
ts
.

A
pp

m
j

T
m
in

p m
a
x

T
m
a
x

p m
in

Q
th
r
es

W
1
W

2
W

3
W

4
W

5
W

6
W

7
W

8
W

9
W

10
W

11
W

12
W

13
W

14
bt
.C
.1
6

1
73

33
9

86
24

9
2.
5

X
X

X
X

X
bt
.C
.2
5

1
53

40
2

70
27

6
4.
7

X
X

m
g.
D
.1
6

1
84

38
0

10
5

26
6

2.
8

X
X

X
X

sp
.C
.1
6

1
54

37
5

62
26

7
7.
1

X
X

X
X

X
ep
.D

.8
8

4
40

36
0

53
23

7
6.
3

X
is
.D

.3
2

3
42

24
9

42
24

1
5.
6

X
X

X
X

X
X

X
bt
.C
.3
6

2
38

34
3

46
24

9
3.
1

X
X

X
X

X
bt
.D

.4
9

2
55

1
39

1
72
9

25
0

5.
6

X
X

X
X

X
X

X
ep
.D

.6
4

3
54

35
3

70
23

7
3.
9

X
X

X
sp
.D

.1
00

4
34

3
39

9
38

1
26

4
3.
3

X
X

X
X

lu
.D

.2
24

8
89

40
0

11
9

25
0

7.
6

X
X

ep
.D

.2
8

1
12

4
38
3

17
5

23
8

5.
9

X
X

cg
.C
.4

1
28

23
8

28
23

9
4.
0

X
X

bt
.D

.2
5

1
10

22
40

2
13
70

25
4

3.
2

X
X

X
X

X
lu
.D

.2
8

1
76

3
42

9
95

4
27

0
5.
0

X
m
g.
D
.8

1
14
1

29
7

15
1

25
8

2.
9

X
X

X
X

X
X

X
X

sp
.D

.1
6

1
11

65
35

5
13

02
27

0
5.
5

X
X

X
is
.D

.4
1

12
2

20
4

12
3

19
4

7.
3

X
X

X
X

cg
.D

.1
6

1
74

3
32

6
82

3
25
3

7.
3

X
X

X
X

ep
.D

.5
6

2
64

38
3

90
23

8
2.
0

X
ft
.D

.6
4

3
28
4

32
1

31
3

24
7

3.
1

X
X

ft
.D

.1
28

6
16

5
32

1
17

9
24

2
7.
7

X
X

sp
.D

.1
96

8
32

9
37

0
35

2
25

3
3.
7

X
lu
.C
.2
8

1
29

41
3

43
25

5
6.
9

X
X

cg
.D

.1
28

6
23

1
33

6
24

2
24

6
4.
0

X
X

X
cg
.D

.3
2

3
36

4
28

1
39

0
24
6

5.
5

X
X

X
ep
.D

.1
00

4
36

36
6

49
23

8
4.
5

X
X

X
X

X
is
.D

.6
4

4
27

28
7

28
22

8
3.
1

X
X

X
X

lu
.D

.1
12

4
16

4
40

5
22

2
25

1
4.
1

X
X

X
X

m
g.
D
.3
2

2
49

37
8

58
26

6
5.
0

X
X

X
X

X
X

X
sp
.C
.6
4

3
31

37
1

32
25

8
2.
2

X

69

2.7.2 Workload Profile

We generate 14 different workload traces using parallel applications from the NAS

Parallel Benchmark (NPB) suite (Bailey et al., 1991). These benchmarks allow a

few different inputs and can be processed using different number of threads/servers.

Because modifying the input and the number of threads/servers significantly changes

the processing time and power consumption, in our evaluation, we use the word

“application” or “a type of job” to refer to a benchmark with a specific input and

processed with a specific number of threads on a specific number of servers. For

example, application bt.C.16 means running benchmark bt with input C and with

16 threads, and we run it on 1 server, as shown in Table 2.4.

Table 2.4 shows the properties of the applications and the composition of the

14 workload traces: W1∼W14. The applications in each trace are marked in the

table. Column mj is jobsize that represents the number of servers we use to run

a certain application. When running an application, Tmin (Tmax) is the minimum

(maximum) processing time in seconds and pmax (pmin) is the corresponding power

consumption of a server in Watts. We determine the values of these parameters by

running experiments on our 36-server cluster. Column Qthres is the QoS threshold

defined in Eq. (2.5), whose values are randomly generated within 2 to 7.9.

For each workload trace, the applications in the trace are selected with some

randomness while following a trace-specific rule summarized in Table 2.5. In addition,

8 applications are selected in W1∼W5 and W8∼W13. Cases with less/more types

of applications are explored by W6 and W7. We also assume a 50% data center

utilization level for W1∼W11 and W14. Cases with lower/higher utilization level are

explored by W12 and W13.

We generate a workload trace by generating the job arrival time of each application

to follow a Poisson process with arrival rate λj. These arrival rates are related to the

70

Table 2.5: Workload trace properties.

Trace Property Note
W1 Mix Applications cover a wide range of size,

processing time, power, and QoS threshold
W2 Single Only contains single-server applications
W3 LargeSize Applications of size 4∼8 servers
W4 ShortTime Applications with Tmin ≤ 120 s
W5 LongTime Applications with 122 s ≤ Tmin ≤ 1022 s
W6 LessType Contains 2 types of applications
W7 MoreType Contains 16 types of applications
W8 LowPower Applications with pmax ≤ 350 W
W9 HighPower Applications with pmax > 350 W
W10 TightQoS Applications with Qthres ≤ 5
W11 SlackQoS Applications with Qthres > 5
W12 Util-25% Average system utilization is 25%
W13 Util-90% Average system utilization is 90%
W14 ExtraTight Top 3 applications with the smallest Qthres

Figure 2·20: Simplified flow chart illustrating the two baseline policies. Ener-
gyQARE (Chen et al., 2019) or Tracking-only policy (Chen et al., 2014) corre-
sponds to the chart with or without the pink region, respectively.

71

0

25
Nu

m
be

r
Number of Jobs Submitted

6000

8000

10000

To
ta

l P
ow

er
 (W

) Avg. tracking error: 23.1%P: 8434 Watt R: 3435 Watt Cost: $0.58

Target Power AQA Policy

0

25

Nu
m
be
r

Number of Jobs Waiting in the Queue

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

Se
rv

er Job Execution

Figure 2·21: Experiments on a real 36-server cluster running workload W4 using
our AQA policy.

data center utilization level η by an approximate equation:

J∑
j=1

λjTj,min = ηN.

Assuming each application shares the data center utilization equally, we can derive

the arrival rate for type-j jobs as

λj =
ηN

Tj,minJ
.

It deserves mentioning that our assumption of Poisson-distribution job arrival

and normal-distribution ISO signal is only a special application of our policy for the

experimental evaluation in this work, and our AQA policy can also be applied for

other distributions of job arrivals and ISO signal.

For simulation, we build a simulator following the same architecture as the one

shown in Fig. 2·2. Our simulator models simulated servers whose behaviors are close

to the BU-SCC servers in our real-system experiments. When a simulated server is

idle, we assume it consumes 169 W power, which is the average idle server power in

our real system. When the simulated servers are running an application, we assume

the power they consume and the time they take to finish the application follow the

72

power and time values in Table 2.4. To be specific, when an application is run with

pmax (or pmin) power, it takes Tmin (or Tmax) time to finish. If the power cap of

running an application is set to be a value pcap within the range of (pmin, pmax), then

we assume the application finishes in T time in simulation. Here, T satisfies

Tmax − T
Tmax − Tmin

=
pcap − pmin
pmax − pmin

.

This formula follows a first-order approximation to the actual power-performance

relation.

2.7.3 Baseline Policies

We compare our AQA policy with two baselines proposed in previous works: the

Tracking-only policy (Chen et al., 2014) and the EnergyQARE policy (Chen et al.,

2019). The flow chart in Fig. 2·20 with or without the pink region corresponds to

the EnergyQARE or the Tracking-only policy. Obviously, the Tracking-only policy

focuses entirely on tracking the target and it ignores job QoS. EnergyQARE has an

additional QoS-aware block (shown in pink) which is activated whenever the relative

QoS degradation, defined as Qj/Qj
thres, is larger than the relative tracking error,

defined as ε/0.3. This QoS-aware block tries to schedule waiting jobs as much as

possible and the power target constraint is ignored temporarily. To select parameters

P̄ and R in EnergyQARE, we do a grid search in the valid range of P̄ , R by running

simulations, and we choose the best P̄ , R that minimize QoS degradation and tracking

error. We use the same P̄ , R from EnergyQARE to run the Tracking-only policy.

2.7.4 36-server Real-System Experiments

To conduct real-system experiments, we run each workload trace and each policy

(AQA, Tracking-only, and EnergyQARE) for one hour on our cluster. We are not

applying job preemption and standby-job-queue in Sections 2.7.4-2.7.5. Later in

73

Figure 2·22: Experiments on a real 36-server cluster running workload W4 using
the EnergyQARE policy.

Section 2.7.6, we present the results of AQA policy with standby jobs. In Section 2.7.7,

we present the results of AQA policy with job preemption. All results presented in

Sections 2.7.4-2.7.6 are from experiments on our real system. Results in Section 2.7.7

are from simulation.

Figure 2·21 shows a typical result for running the AQA policy on our 36 servers.

The workload trace for this experiment is W4. The green bars show the number of

jobs (summed over all types) submitted to the queues in each time interval. The red

curve represents the target power calculated from the ISO signal. The blue curve

represents the total power consumption of the 35 client servers. We see clearly that

the real power consumption follows closely with the target power.

The yellow curve shows the total number of jobs waiting in the queues. Clearly,

this waiting job number is negatively correlated with the target power. At t = 400

s and 1400 s, when the target power drops, the number of active servers needs to be

diminished, and consequently, more jobs are held in the waiting state. The deep grey

stripes at the bottom of Fig. 2·21 show the period when a server is running a job,

and the vertical displacement of a stripe denotes the server’s index number.

In this experiment, the estimated electricity cost for these servers is $0.58 when

74

0 2 4 6 8
QoS Degradation of Job Type: mg.D.16

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
Di
st
rib

ut
io
n
Fu
nc
tio

n

Tracking-only
EnergyQARE
AQA

(a) mg.D.16

0 2 4 6 8
QoS Degradation of Job Type: sp.C.16

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
Di
st
rib

ut
io
n
Fu
nc
tio

n

Tracking-only
EnergyQARE
AQA

(b) sp.C.16

0 2 4 6 8
QoS Degradation of Job Type: is.D.32

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
Di
st
rib

ut
io
n
Fu
nc
tio

n

Tracking-only
EnergyQARE
AQA

(c) is.D.32

0 2 4 6 8
QoS Degradation of Job Type: ep.D.64

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
Di
st
rib

ut
io
n
Fu
nc
tio

n

Tracking-only
EnergyQARE
AQA

(d) ep.D.64

0 2 4 6 8
QoS Degradation of Job Type: cg.C.4

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
Di
st
rib

ut
io
n
Fu
nc
tio

n

Tracking-only
EnergyQARE
AQA

(e) cg.C.4

0 2 4 6 8
QoS Degradation of Job Type: lu.C.28

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
Di
st
rib

ut
io
n
Fu
nc
tio

n

Tracking-only
EnergyQARE
AQA

(f) lu.C.28

0 2 4 6 8
QoS Degradation of Job Type: is.D.64

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
Di
st
rib

ut
io
n
Fu
nc
tio

n

Tracking-only
EnergyQARE
AQA

(g) is.D.64

0 2 4 6 8
QoS Degradation of Job Type: mg.D.32

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
Di
st
rib

ut
io
n
Fu
nc
tio

n

Tracking-only
EnergyQARE
AQA

(h) mg.D.32

Figure 2·23: The cumulative distribution functions (CDF) of all 8 applications’
QoS degradation when running workload W4 in real-system experiments with three
different policies. Both the EnergyQARE and the Tracking-only policies cannot
meet the QoS constraints of application is.D.64, as shown in (g). On the other
hand, our QoSG policy can meet that application’s QoS constraint by giving it a
large weight as shown in Fig. 2·25. In these CDF curves, the solid vertical line
shows where the curves reach 100%.

75

0.0 0.1 0.2 0.3 0.4
Tracking Error (=|P_actual-P_target|/R)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

Tracking-only
EnergyQARE
AQA

Figure 2·24: The cumulative distribution functions (CDF) of tracking error ac-
cording to the three policies.

applying our AQA policy6. On the other hand, the electricity cost for applying the

Tracking-only or EnergyQARE policy is $0.77 or $0.78, 33% higher than AQA (see

Fig. 2·22 for the results of the EnergyQARE policy). Figure 2·24 and Fig. 2·23

compares the cumulative distribution functions (CDFs) of the tracking-error violation

and the QoS violation among the three policies. This proves that our AQA policy

provides more cost reduction than the baselines without violating tracking and QoS

constraints. If not participating in demand response, the electricity cost can be

estimated as ΠP P̄ × 1h = $0.84. Therefore, we conclude that AQA policy reduces

the cost by 1− 0.56/0.84 = 33%.

The optimal P̄ and R for AQA policy with this workload are 8434 W and 3435 W,

which are selected following the gradient-descent-based method discussed in Sec. 2.6.3.

Figure 2·25 shows how the weights for the 8 types of application are adjusted through

iterations. Although all weights are similar at initialization, the weight for application

is.D.64 increases significantly to 31.3% at the end, meanwhile the weights for other

applications decrease slightly to save space for is.D.64 as all weights should sum to

1. The application is.D.64 needs a much larger weight than others because of its
6We can see the value is at the correct magnitude according to this estimation: 8000 W × 1h ×

70% (cost reduction) × 0.1$/kWh = $0.56.

76

0 5 10 15 20
Iteration

0.10

0.15

0.20

0.25

0.30

W
ei
gh

t

mg.D.16
sp.C.16
is.D.32
ep.D.64

cg.C.4
lu.C.28
is.D.64
mg.D.32

Figure 2·25: Weights adjusted by gradient-descent optimization.

relatively large size (taking 4 servers), short processing time (27 s), and relatively

strict QoS constraint (Qthres=3.1).

This capability of fine-tuning the weights for different applications by gradient-

descent optimization is one of the key advantages of our AQA policy over the En-

ergyQARE policy. In EnergyQARE, all applications are treated similarly in using

servers, so the jobs that are easier to violate their QoS constraint cannot gain higher

priority. Our AQA policy, instead, balances the QoS of all types of applications by

optimizing the cost function in Eq. (2.101). Through iterations of simulation and

gradient-descent optimization, any application type that suffers from a high QoS vi-

olation probability will be given a higher weight by reducing the weights of other

applications. If the weights of other applications are already at critical values and

cannot be further reduced, P̄ will increase and R will decrease to provide more space

in tuning the weights.

2.7.5 Comparison of 14 Workload Traces

We experiment with the 14 workload traces listed in Table 2.5, and our findings are

summarized as follows:

• With workload trace W2, all three policies meet both the QoS constraints and

the tracking constraint.

77

Table 2.6: Experiments with 14 workload traces using the AQA policy.

Trace Cost Cost Reduction
W1 $0.58 30%
W2 $0.57 37%
W3 $0.68 29%
W4 $0.58 31%
W5 $0.34 56%
W6 $0.64 34%
W7 $0.58 33%
W8 $0.56 29%
W9 $0.58 37%
W10 $0.58 34%
W11 $0.46 46%
W12 $0.46 38%
W13 $0.71 31%
W14 $0.64 33%

• With workload traces W6, W8, W10, and W11, AQA and EnergyQARE can

meet all constraints, whereas the Tracking-only policy violates QoS constraints.

• With workload trace W1, W3∼W5, W7, W9, W12∼W14, only the AQA policy

meets all constraints (standby jobs needed for W3, see Section 2.7.6), whereas

the Tracking-only policy and the EnergyQARE policy violate either the QoS

constraints or the tracking constraint.

In summary, our experiments with the 14 workloads prove that our proposed AQA

policy outperforms EnergyQARE and Tracking-only as AQA meets QoS and tracking

constraints in all tested workloads while EnergyQARE and Tracking-only cannot. The

results also prove that Tracking-only is the worst among the three policies at meeting

QoS objectives as Tracking-only can only meet the QoS constraints for 1 out of 14

workloads. Although Tracking-only policy performs well at tracking the regulation

signal, it sacrifices QoS too much.

Table 2.6 summarizes the cost and cost reduction of AQA policy in these ex-

periments. Here, cost reduction of AQA policy means the percentage of reduction

with regard to the cost without demand response participation which is estimated as

78

0 2 4 6 8
QoS Degradation of Job Type: ep.D.100

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

EnergyQARE
AQA

(a) Application ep.D.100.

0 2 4 6 8
QoS Degradation of Job Type: mg.D.8

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

EnergyQARE
AQA

(b) Application mg.D.8.

Figure 2·26: The cumulative distribution functions of QoS degradation when
running W13 with AQA or EnergyQARE.

ΠP P̄ × 1h. From this, we see our AQA policy reduces the electricity cost by 29-56%.

The single-server workload mix, W2, performs well in all evaluated policies. This

matches the results of the evaluations in the prior works that proposed the Ener-

gyQARE and the Tracking-only policies (Chen et al., 2014; Chen et al., 2019). Intu-

itively, single-server jobs are much better than multi-server jobs in regulation service

participation because single-server jobs are easier for scheduling while larger jobs need

to wait until the time when enough servers are available. In addition, even though all

three policies perform well in trace W2, AQA is better than the other two as AQA

achieves the lowest electricity cost: $0.57, which is 7% (or 8%) lower than the $0.61

(or $0.62) from Tracking-only (or EnergyQARE).

It also deserves mentioning the result from workload trace W13 as it is a good

example demonstrating the benefits of the adaptive optimization of weights in AQA

policy. For this workload trace, AQA can meet both tracking and QoS constraints.

EnergyQARE either fails to meet the tracking error constraint or fails to meet the

QoS constraints of some applications even after we exhaustively experiment with all

valid pairs of P̄ , R in simulation. Figure 2·26(a) compares the cumulative distribution

functions of the QoS degradation of application ep.D.100 in AQA or EnergyQARE7,
7In this figure, EnergyQARE runs with a best pair of P̄ , R that has the lowest QoS degradation

79

5000

7500

10000

12500
To

ta
l P

ow
er

 (W
) Avg. tracking error: 30.1%P: 9135 Watt R: 3955 Watt Cost: $0.64

Target Power AQA Policy

0 500 1000 1500 2000 2500 3000 35000

20

Nu
m

be
r

Number of Jobs Waiting in the Queue (Excluding Standby Jobs)

(a) AQA policy without standby jobs.

5000

7500

10000

12500

To
ta
l P
ow

er
 (W

) Avg. tracking error: 14.7%P: 9607 Watt R: 3247 Watt Cost: $0.68

Target Power AQA Policy

0 500 1000 1500 2000 2500 3000 35000

20

Nu
m
be

r

Number of Jobs Waiting in the Queue (Excluding Standby Jobs)

(b) AQA policy with standby jobs.

Figure 2·27: Experiments on a real 36-server cluster running workload trace W3
using our AQA policy.

and Fig. 2·26(b) is for application mg.D.8. These figures show that the AQA policy

enables both ep.D.100 and mg.D.8 to meet their QoS constraints. On the other

hand, using EnergyQARE, ep.D.100 fails to meet its QoS constraint while mg.D.8’s

QoS is too good and even better than its QoS in AQA policy.

A main reason behind this is that mg.D.8 runs on 1 server but ep.D.100 takes

4 server, so mg.D.8 is easier to be scheduled due to its small size, resulting in its

low QoS degradation in EnergyQARE. However, the failure of ep.D.100 to meet its

QoS constraints in EnergyQARE proves that we need a mechanism to give different

priorities to these two applications so that we can sacrifice the performance of mg.D.8

to improve the performance of ep.D.100. Therefore, the reason why AQA enables

both applications to meet their constraints is the adaptive optimization of weights.

In fact, the gradient-descent-based optimization in AQA results in a 38.8% weight for

ep.D.100 and a 4.2% weight for mg.D.8.

To verify that our policy can be applied to QoS constraint values other than the

while meeting tracking error constraint.

80

specific Qthres values shown in Table 2.4, we also conduct simulations for 10 times

with randomized selection of Qthres values within the range from 2 to 7.9. In all cases,

we find that our optimization method is able to find weights and bidding parameters

that guarantee all jobs to meet their QoS constraints while participating in demand

response.

2.7.6 AQA with Standby Jobs

As discussed in Section 2.4.6, we suggest a standby job queue to solve the potential

problem caused by lack of submitted jobs. In case that regular jobs are large in

size, standby jobs also help improve the power tracking performance if their sizes are

smaller.

In our experiments with workload trace W3 where each regular job takes 4 to 8

servers (which is considered “large” as they already occupy 11% to 22% of our cluster),

applying our AQA policy without standby jobs results in violation of tracking error

(see Fig. 2·27(a)) because large jobs are much less flexible in scheduling. The average

tracking error here is 30.1%. On the other hand, with standby jobs of one server

in size, Fig. 2·27(b) shows better tracking performance where the average tracking

error is 14.7%. The standby jobs will start whenever there are insufficient jobs. As

a result, AQA with standby jobs smooths the power consumption curve and enables

the power consumption to match the target at t = 2700, instead of leaving a 3000 W

gap at t = 2700 in Fig. 2·27(a) due to the lack of waiting jobs.

2.7.7 AQA with Job Preemption

We evaluate job preemption in simulation using workload trace W5, where applica-

tions have relatively long execution time ranging from 122 s to 1022 s. Figure 2·28

compares the results of the AQA policy with or without job preemption. The same P̄ ,

R, and weights are used. The green regions in Fig. 2·28(b) represent the time where

81

2500

5000

7500

10000

12500
To

ta
l P

ow
er

 (W
) Avg. tracking error: 9.5%P: 7759 Watt R: 5127 Watt Cost: $0.31

Target Power AQA Policy

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

Se
rv

er Job Execution

(a) AQA policy without job preemption.

2500

5000

7500

10000

12500

To
ta

l P
ow

er
 (W

) Avg. tracking error: 6.2%P: 7759 Watt R: 5127 Watt Cost: $0.30

Target Power AQA Policy

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

Se
rv

er Job Execution
Job Preemption

(b) AQA policy with job preemption.

Figure 2·28: Evaluating AQA policy with/without job preemption by simulation
using workload trace W5.

a job is preempted to reduce power and resumed later. As a result, the total power

consumption at t = 400, t = 1400, t = 1800, etc. in job preemption case is lower

than the case without job preemption, enabling AQA with job preemption to achieve

a lower average tracking error of 6.2%, in comparison with the 9.5% tracking error

from AQA without job preemption. Both cases in Fig. 2·28 meet the tracking error

constraint (according to their CDFs curves, not shown here), so the real benefit of job

preemption here is a slight decrease of electricity cost from $0.31 to $0.30. However,

if using some workload traces that have application execution time even longer than

the ones in W5, we find that AQA without job preemption may not be able to meet

the tracking error constraint. In those cases, job preemption becomes necessary.

2.7.8 Comparison of different QoS constraint levels

To evaluate the impact of different QoS constraint levels on our policy, we conduct

simulations with a workload when applications’ QoS constraints are changed from

tight to loose. Starting from the QoS constraints shown in Table 2.4 columnQthres (we

82

0 2 4 6 8
QoS Degradation of Job Type: is.D.64

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

EnergyQARE
AQA

(a) Medium QoS level.

0 2 4 6 8
QoS Degradation of Job Type: is.D.64

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

EnergyQARE
AQA

(b) Tight QoS level.

Figure 2·29: Comparing results from workload W4 with either a medium or a
tight QoS constraint level.

0

20

Nu
m

be
r

Number of Jobs Submitted

2000000

2500000

3000000

To
ta

l P
ow

er
 (W

) Avg. tracking error: 20.6%P: 2538113 Watt R: 798553 Watt Cost: $190.37

Target Power AQA Policy

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

0

50

Nu
m
be
r

Number of Jobs Waiting in the Queue

Figure 2·30: Evaluating QoSG policy by simulating a 10k-node data center with
a job-size-scaled version of W1 workload.

83

call them as in a "medium" QoS constraint level), we tighten the QoS constraints of

the applications by decreasing the Qthres of each application by half, and we loosen

the QoS constraints of the applications by doubling the Qthres of each application.

These simulations do not apply a standby job queue or job preemption. Figure 2·29

compares the simulation results of workload W4 with either a medium or a tight QoS

constraint level. As we can see, when the QoS constraint levels change from medium

in Fig. 2·29(a) to tight in Fig. 2·29(b), both our QoSG policy and the EnergyQARE

policy improve the QoS of this application, and our policy enables the application to

meet the QoS constraint while EnergyQARE policy does not. We only show the QoS

degradation curve of application is.D.64 due to the space limit, but the results for

other applications have similar behaviors as this one. Therefore, we conclude that

our QoSG policy has the opportunity to meet either a loose or a tight QoS constraint

assuming there is a valid solution that can be achieved by selecting the appropriate

values for the weights and bidding parameters.

2.7.9 Scalability to large data centers

To evaluate the scalability of our policy when applied to large data centers, we conduct

simulation studies with a data center composed of ten thousand servers. Figure 2·30

shows the simulation results of running a job-size-scaled version of workload W1

for one hour. Here, the workload is composed of the same types of applications in

Table 2.4 (W1) but the number of nodes used by each application is scaled up by

100x (e.g., application is.D.32 takes 300 nodes instead of 3 nodes), and the job arrival

rates are also adjusted to match an assumed 50% utilization level of this large data

center. As shown in Fig. 2·30, our policy works well for a large data center with 10k-

node and enables the actual power to follow the target power closely. We also check

the QoS degradation of the applications, and they all meet their QoS constraints.

The electricity cost with demand response participation in this experiment is $190.4

84

according to Eq. (2.3). Without demand response participation, the electricity cost

for running these jobs can be estimated as ΠP P̄ × 1h = $253.8. Therefore, the cost

reduction for this experiment is 25%. If the data center has similar power consumption

and cost reduction throughout the year, then it can save $555,822 (= 253.8× 25%×

24× 365) per year by participation in demand response with our policy.

2.8 QoSCap Power Management Policy and Adaptive Bidding
Policy

The QoSG and AQA policies proposed above enable data centers to participate in reg-

ulation service programs while abiding by job QoS contraints. However, these policies

only consider a single bidding cycle (1 hour) and do not explicitly target parallel jobs

with long execution times, from several hours to days, as these policies mostly rely

on job scheduling to regulate a data center’s power. Job scheduling, however, does

not always provide sufficient control points when handling uninterruptible jobs with

long duration. Also, long-duration jobs may go through multiple contract bidding

cycles and previous bidding policies are not suitable for this scenario either. In addi-

tion, most prior approaches rely on synthetic workload traces to evaluate the policies,

and they seldom experiment with real-world workload traces taken from system logs

which contain large variations in job arrival times.

We propose the QoSCap power management policy and the Adaptive Bidding

policy to address these needs. Our power management policy relies on the power

capping capability of servers to regulate data center power for demand response par-

ticipation. The proposed policy applies power limits while considering the Quality-

of-Service (QoS) of jobs. We also propose an Adaptive Bidding policy that selects

appropriate contract parameters for data centers to participate in regulation service

markets when applying the QoSCap policy. We evaluate our policies by simulation

85

Figure 2·31: Power management policies regulate data center power through job
scheduling and power-capping to match the actual power consumption with the
target power.

using parameters and workload traces taken from a real data center (Patel et al.,

2020). Our results show that our proposed policies enable data centers to partici-

pate in regulation service and save 10% on electricity costs while abiding by all QoS

constraints of real workload traces.

In the following, we first discuss our new QoSCap power management policy, then

we discuss three bidding policies including our new Adaptive Bidding policy. We

make similar assumptions on the data center model as discussed in Section 2.3. In

the following, we assume there are constraints on the average QoS degradation of

each type of jobs: Avg[Qj] < Qthres
j . Here, Qthres

j is the QoS threshold for job type j.

A job’s QoS degradation is Qj = (T soj − Tminj)/Tminj , where T soj is the sojourn time

of the job in the system, including the waiting time Twaitj and the actual processing

time T procj , i.e., T soj = Twaitj + T procj .

2.8.1 Power Management Policies

Power management policies match the actual data center power with the data center’s

target power through job scheduling and server power capping. A common strategy

for these power management policies is to start running more jobs and to increase

CPU power caps when the actual power is lower than the target power. These policies

typically hold waiting jobs and decrease the CPU power caps when the actual power

86

is higher than the target power, as shown in Fig. 2·31.

The QoSCap (QoSCap) policy not only applies the strategy in Fig. 2·31 but

also intelligently adjusts power caps on servers considering the estimated QoS of jobs

at run time. Every second, the policy calculates an estimated QoS degradation of

each job by

Qest = (Twait + Telapse + Tremain)/Tmin. (2.122)

Here, Twait is the waiting-in-queue time of the job. If the job is currently running, then

Telapse is non-zero and represents the time from job beginning to the current time.

Tremain represents the remaining time to finish the job, estimated as the remaining

percentage of the work to be done multiplied by the minimum execution time. In

real world workloads, the percentage of work to be done for a job can be estimated

based on the number of finished phases or loops of the job. Calculating the estimated

QoS degradation metric enables the system to know which job’s QoS degradation will

exceed the threshold in advance.

Based on the estimated QoS degradation, the QoSCap policy starts jobs whose

QoS is close to violation before it is too late to recover. The policy prioritizes job

types with larger average QoS degradation when it is scheduling jobs to increase

power consumption. The policy only decreases server power caps for job types that

meet their QoS constraints. As a consequence, jobs that wait too long in the queue or

run with too low power caps are reflected by their higher estimated QoS degradation

values, and they will be prioritized to start and run with full power.

2.8.2 Bidding Policies

Bidding policies select the bidding parameters, P̄ and R, at the beginning of every

hour. P̄ and R determine the average and the variation of the target power, as shown

in Fig. 2·32.

87

Figure 2·32: Bidding policies select the appropriate P̄ ,R parameters that deter-
mine the average and the variation of the target power.

Based on the electricity cost in Eq. (2.3), a data center should pursue a smaller

P̄ and a larger R to reduce its cost. However, selecting P̄ too small or R too large

leads to QoS degradation. Therefore, an appropriate bidding policy is needed. In the

following, we discuss the Fixed Heuristics Bidding policy and the Fixed Exhaustive

Search Bidding policy used in previous works (Chen et al., 2014; Chen et al., 2019).

Then, we introduce our new Adaptive Bidding policy.

The Fixed Heuristics (FH) Bidding policy selects P̄ and R based on the

long-term average power and power control range estimation. As long as the estimated

job arrival rates do not change, that power estimation does not change over time, so

the FH policy selects the same P̄ and R at all times.

Assuming we know the arrival rate λj for each job type j, we can estimate the

average number of active servers in the data center as Nactive =
∑

j λjmjT
min
j . Here,

mj is the size (i.e., required number of nodes) for each job of type j. Then, the

total power of all idle servers can be estimated as Pidle = (Ntotal − Nactive) × pidle

on average. The active servers can change their power consumption through power

capping, so the total power of all active servers can vary from Pmin
active = Nactive× pmin

to Pmax
active = Nactive × pmax. Here, pmin or pmax is the min/max power of an active

88

server, which can be estimated as the average min/max power of all job types, i.e.,

pmin = (
∑

j p
min
j)/J , pmax = (

∑
j p

max
j)/J . Here, J is the number of job types.

Based on the discussion above, we can derive the average minimum and maximum

power of the data center as Pmin
all = Pmin

active+Pidle and Pmax
all = Pmax

active+Pidle. Therefore,

the FH policy selects P̄ = (Pmax
all + Pmin

all)/2 and R = (Pmax
all − Pmin

all)/2 as they are

the estimated long-term average power and control range.

The Fixed Exhaustive Search (FES) Bidding policy selects the optimal

parameters that minimize the electricity cost. It finds the optimal point through

exhaustive search by running simulation over a wide range of P̄ , R with synthetic

workloads (generated according to the arrival rates λj), and selects the parameters

that minimize the electricity cost while meeting the tracking-error and the QoS con-

straints. The FES policy does the exhaustive search once and applies the fixed values

of P̄ , R to all hours.

The Adaptive Bidding policy determines the bidding parameters based on

the current active and waiting jobs in the system instead of selecting the parameters

based on the long-term average utilization of a data center. The motivation is, when

long-duration and large parallel jobs are common in a data center, the average power

and the power control range in a certain hour could significantly deviate from their

long-term average.

At the bidding time, the Adaptive Bidding policy calculates the possible max/min

total power, Pmax
all and Pmin

all , by summing the max/min power of each active or waiting

job. For an active or waiting job that suffers from a QoS violation (Qj > Qthres
j),

its power is set as the maximum, pmaxj per node. For an active or waiting job not

violating QoS constraints, its achievable min/max power is pminj and pmaxj per node.

Idle nodes always consume power pidle. After calculating Pmax
all and Pmin

all , the policy

selects P̄ = (Pmax
all + Pmin

all)/2 and R = (Pmax
all − Pmin

all)/2.

89

2.9 Simulation Results of QoSCap and Adaptive Bidding Poli-
cies Using Real Workload Traces

To evaluate our policies in a real-world scenario, we conduct simulations using real

system parameters and real workload traces taken from the emmy and meggie clusters

at the Regional Computing Center in Erlangen (RRZE) (Patel et al., 2020). The

following subsections describe how we obtained data about these clusters and their

workloads, and how our simulator utilizes that data.

2.9.1 Workload Traces

Simulating a cluster requires the descriptions of the cluster’s nodes, the workloads

being executed, and the job submission times of the workloads in its job queue. We

extract all of these properties from real traces provided by Patel et al. along with

their analysis of the emmy and meggie clusters (Patel et al., 2020).

Node Properties

The emmy cluster has 560 nodes, and the meggie cluster has 728 nodes. The logs and

traces we have available do not report the idle power of these nodes, but a workload

efficiency model on this cluster by Klawonn et al. suggests that idle power is in the

vicinity of 31 watts (Klawonn et al., 2020). So, we assume pidle = 31 W.

Workload Extraction

The emmy and meggie clusters do not use the same job scheduler and resource man-

ager, and their trace outputs follow a different format with different types of events.

We use a common subset of the events and properties that are available from both

clusters. The selected job description fields are:

• Average DRAM and CPU power from start to end

90

Figure 2·33: The logged power and execution time of jobs running on the meggie
cluster in February 1-8, 2019.

• First enqueued time (in case a single job instance was enqueued and requeued

multiple times, we only take the first time)

• Job start time and end time

• Anonymized job name

• Count of nodes assigned to the job

As the power reported in the logs only includes CPU and DRAM power, our

simulation and analysis only considers the CPU and DRAM power, and we ignore

the cooling power because we have no data for that. The data from the emmy cluster

also reports job deletion events. We ignore any jobs that were deleted before they

could start executing. An example of the power and execution time of jobs extracted

from the log and used in our simulation are displayed in Fig. 2·33. Jobs with the

same name and node count are shown as marks with the same color, size, and shape.

91

0
25

Nu
m

be
r

Number of Jobs Submitted

0 3 6 9 12 15 18 21 24
Time (Hour)

50000

60000

70000

Po
we

r (
W
)

Avg. tracking error: 15.9%

Target Power Actual Power

(a) EnergyQARE + FES Bidding policy results.

0 20 40 60 80
Job Type ID

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Av
er

ag
e

Qo
S

De
gr

ad
at

io
n

(b) QoS Degrada-
tion.

(c) QoSCap + Adaptive Bidding policy results.

0 20 40 60 80
Job Type ID

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Av
er

ag
e

Qo
S

De
gr

ad
at

io
n

(d) QoS Degrada-
tion.

(e) EnergyQARE + Adaptive Bidding policy results.

0 20 40 60 80
Job Type ID

0

1

2

3

4

5

6

Av
er

ag
e

Qo
S

De
gr

ad
at

io
n

(f) QoS Degrada-
tion.

Figure 2·34: Simulating a data center participating in regulation reserve pro-
grams when applying our policies. The simulations use real server parameters and
run workload traces taken from a real 728-node cluster called meggie. In (c) and
(d), the QoSCap with Adaptive Bidding policy enables the data center to match
its actual power (blue) with the target power (red) and meet the QoS constraints
of jobs.

92

2.9.2 Simulator Setup

We design a simulator based on the parameters of the clusters and workloads. The

simulator is fed idle power and the host count for each cluster, as well as a list of jobs

and their properties. The workload properties used by the simulator are nodes per

job, maximum allowed performance degradation, minimum and maximum observed

power, and the elapsed run time of the job when running under those power levels.

When we apply the FES bidding policy, to generate a synthetic queue for bidding

parameter searches, our simulator also takes the mean job incoming rates as inputs.

For our final evaluations of the selected bidding parameters, we replay the queue

submission times from the cluster logs instead of using the synthetic queues.

To simulate the effect of a continuous range of power capping on the execution

time of a job, the simulator assumes there is a linear relation between the power and

execution time for each job type. To be specific, when we apply a power cap on every

node of a job type j, if we reduce the power cap from pmaxj to pminj , we assume the

execution time linearly increases from Tminj to Tmaxj . For a parallel job, we always

apply the same power-cap to all the nodes running this job.

2.9.3 Simulation Results

We simulate the meggie or emmy cluster with job arrivals taken from multiple periods

of the workload trace. Figure 2·34 presents a typical 24-hour result which simulates

the meggie cluster with workload trace on Feb. 5th, 2019. To get this result, we

actually simulate the workload trace from Feb. 1st − 5th instead of starting directly

from Feb. 5th, so we can avoid the unrealistic underutilization of the cluster at the first

few days. These simulations assume the threshold for the average QoS degradation

of all job types (Qthres
j) is 2.

Figure 2·34(a) shows the results of applying the EnergyQARE with FES Bidding

93

policy, and the average QoS degradation of each job type when applying these policies

is shown in Fig. 2·34(b). Figures 2·34(c)(d) shows the results of the QoSCap and

Adaptive Bidding policy. Figures 2·34(e)(f) are for the EnergyQARE with Adaptive

Bidding policy. In Figs. 2·34(a)(c)(e), the red curve shows the target power and

the blue curve shows the simulated actual power of the cluster. The green bars

in Fig. 2·34(a) show the number of jobs submitted to the cluster in different time

intervals, and these job arrivals are the same for Figs. 2·34(c)(e) because they simulate

the same workload trace. In Figs. 2·34(c)(e), we also draw the time span of executing

each job as the gray lines, where the vertical placement of the gray lines represents the

server index number. We also calculate the electricity cost according to Eq. (2.3), and

it shows that the proposed QoSCap with Adaptive Bidding policy enables the data

center to get an 10% reduction of its electricity cost compared to the cost without

regulation service participation.

From the results in Fig. 2·34, we see that the first two policy combinations meet

the QoS constraints of computing jobs, QoSCap with Adaptive Bidding also meets

tracking constraints as we see the actual power curve follows the target power closely.

On the other hand, EnergyQARE with FES Bidding cannot meet tracking constraints

as the actual power sometimes cannot follow the lower part of the target (during hours

4 to 10) and sometimes cannot follow the higher part of the target (during hours 11 to

16). The P̄ and R for this case are already optimally selected using the FES Bidding

policy, so any other P̄ , R selection either violates the tracking constraints or violates

the QoS constraints.

The reasons for EnergyQARE with FES Bidding not performing well include the

abundance of long-duration parallel jobs and the large variation of job arrivals. The

work that proposed the EnergyQARE and FES Bidding policies (Chen et al., 2019)

targets minute-long and single-node jobs which provide higher granularity to regulate

94

power through job scheduling. In the real workload trace we simulate here, jobs

mostly have an execution time of multiple hours (up to 24 hours) and many parallel

jobs require multiple nodes to run (up to 64 nodes).

Since jobs use many nodes at a time and span long durations, variations in job

arrivals cannot be handled well by a fixed bidding parameter selection. On the other

hand, Fig. 2·34(c) shows that the Adaptive Bidding policy can improve the tracking by

selecting a higher P̄ during hours 4 to 10 and a lower P̄ later. However, EnergyQARE

with Adaptive Bidding also does not perform well as shown in Fig. 2·34(e)(f) because

QoS constraints are not met. This is because the EnergyQARE policy shifts its

priority between tracking and QoS based on the average QoS of all jobs. So, QoS

violations of a small count of job types is not handled by the policy, which leads to

the large QoS violation of individual job types shown in Fig. 2·34(f).

Results for other combinations of power management and bidding policies are

presented in Table 2.7. The table shows whether a policy combination meets the

tracking or QoS constraints. The table also includes results for the 24-hour simulation

of the meggie cluster with workload trace on Jan. 16th, 2019, as well as the 24-hour

simulation of the emmy cluster with workload trace on Nov. 15th, 2018. Among all

different policy combinations, only the QoSCap with Adaptive Bidding policy meets

all constraints in all the three workload traces. Results for the Tracking-only policy

are not listed since that policy is ignorant of QoS and never meets all constraints. We

have also simulated several other periods of the entire workload traces (not shown)

and we also observe the same result that QoSCap with Adaptive Bidding meets both

constraints.

95

Workload Power
Management

Bidding
Policy

Tracking
Error

QoS
Degrad.

Energy
Cost

Meggie
Feb. 5
2019

EnergyQARE
FH 7.7% 4.0 -
FES 18.1% 1.8 -

Adaptive 2.0% 5.8 -

QoSCap
FH 9.3% 1.5 $124
FES 20.3% 1.4 -

Adaptive 1.0% 1.9 $122

Meggie
Jan. 16
2019

EnergyQARE
FH 2.2% 3.0 -
FES 0.2% 4.8 -

Adaptive 1.9% 2.6 -

QoSCap
FH 18.0% 2.0 -
FES 4.1% 1.9 $151

Adaptive 0.2% 2.0 $166

Emmy
Nov. 15
2018

EnergyQARE
FH 73.9% 2.2 -
FES 0.8% 1.0 $115

Adaptive 0.1% 2.1 -

QoSCap
FH 70.4% 1.9 -
FES 2.8% 2.1 -

Adaptive 0.7% 2.0 $119

Table 2.7: Simulation results of applying different policies for data center partici-
pation in regulation service. The proposed policy combination QoSCap + Adaptive
is in bold. The “Tracking Error” column shows the percentage of large tracking
error, and a value larger than 10% violates the tracking constraint. “QoS Degrad.”
column shows the largest average QoS degradation among all job types, and a
value larger than 2.0 violates the QoS constraints. Values violating constraints are
shown in red, otherwise in green. The electricity cost for policies that meet all
constraints are displayed.

96

Chapter 3

Mitigating Network Congestion and
Improving Performance through Novel Job
Allocation Strategies

3.1 Introduction

Efficient system management in ever-growing high performance computing (HPC)

systems is a common concern of designers, administrators, and users. As the number

of cores required by parallel programs continues to increase, network communication

time among the compute nodes becomes a performance bottleneck (Bhatele et al.,

2013b; Leung et al., 2002). Recently, it is commonly reported that network conges-

tion is a major cause of performance degradation in HPC systems (Bhatele et al.,

2013a; Smith et al., 2016; Bhatele et al., 2020), and network congestion can lead to

an extention on job execution time by 6X(Chunduri et al., 2017). Thus, mitigating

network congestion and reducing the communication cost on HPC systems are essen-

tial to improve the performance of HPC systems and promote better utilization of

valuable computation resources.

In Section 3.2, I propose a novel job allocation policy called Level-Spread which

mitigates network congestion and improves performance by harnessing the hierar-

chical structure of dragonfly networks. This policy is evaluated in simulation and

discussed in Section 3.3. In Section 3.5 and Section 3.6, I propose an approach to

quantify the impact of network congestion on applications and demonstrate this ap-

97

proach using experiments on a large HPC system. My experiments demonstrate that

applications which spend more time on MPI collective operations are more sensitive

to network congestion, and I also show that certain network metrics are indicative of

network congestion and performance degradation. Based on these findings, in Sec-

tion 3.7 and Section 3.8, I propose and evaluate a network-data-driven job allocation

policy. The policy uses network counter data to quantify the network traffic intensity

on routers, and allocate jobs according to the collected traffic intensity.

3.2 Level-Spread Allocation Policy

Dragonfly (Kim et al., 2008) is a network topology utilizing high-radix routers, and

has attracted attention in recent years (Belka et al., 2017; Fuentes et al., 2016; Faizian

et al., 2016; Jain et al., 2016; Groves et al., 2016; Yang et al., 2016; Kaplan et al.,

2017). Dragonfly networks are composed of interconnected groups that behave as

virtual routers. A group contains a set of compute nodes, network links, and routers.

One example of a group is shown in Fig. 3·1. Different groups are connected by

optical global links, and routers in each group are connected by electrical local links.

Each router is connected to several nodes. Owing to the all-to-all connections among

its groups, dragonfly is a constant-diameter network (i.e., the diameter does not scale

up with the increase in the number of nodes). A message sent from one node to

another following the shortest-path route passes through at most two local links and

one global link. The dragonfly topology has been implemented in some of the latest

HPC systems (Faanes et al., 2012; Chakaravarthy et al., 2012).

An important factor that affects the communication time in HPC systems is job

allocation (Leung et al., 2002), which is the procedure of selecting a set of compute

nodes to run a parallel program. The hierarchy of the dragonfly topology brings

new complexity to job allocation, and to date, job allocation on dragonfly has not

98

Figure 3·1: A group in a dragonfly network. The group is composed of 4 routers
that are connected to each other by local links (green). Each router is connected to
4 nodes, which are labeled by numbers. The entire dragonfly machine (not shown
here) consists of a number of such groups. Between each pair of groups there is a
global link (blue) connecting them together.

been fully explored. Most studies on dragonfly networks only consider two allocation

policies: simple allocation (i.e., selecting nodes by following the label order) and

random allocation (Faanes et al., 2012). Jain et al. (Jain et al., 2014) proposed six

different job allocation policies for dragonfly machines and concluded that random

allocation is generally better than the others. Yang et al. (Yang et al., 2016) further

demonstrated that random allocation cannot guarantee the best performance for every

job.

Inspired by the prior work, we examine the shortcomings of existing allocation

policies and conclude that a size-aware job allocation policy is necessary to further

improve the performance on dragonfly networks. To this end, we propose the Level-

Spread allocation policy (Sec. 3.2) and compare it with several state-of-the-art alloca-

tion policies (Sec. 3.3.4). We perform extensive simulations (Sec. 3.3) and show that

our proposed policy outperforms the existing policies (Sec. 3.4). In addition, we dis-

cuss the influence of scheduling on the performance of allocation policies (Sec. 3.4.5).

The specific contributions of our work are as follows:

• We demonstrate that on dragonfly networks, harnessing node locality and bal-

99

ancing link congestion are two complimentary approaches to reduce communi-

cation latency. Existing allocation policies only resemble either one of these

two approaches. We show that combining them intelligently provides better

performance.

• We design a novel allocation policy, Level-Spread, for dragonfly networks. This

policy spreads jobs within the smallest network level that a given job can fit in.

Through packet-level network simulations, we show that our proposed policy

reduces the communication time by 16% on average compared to the state-of-

the-art policies by harnessing node locality and balancing link congestion.

Our work distinguishes from the related work by the following points. First, we

propose a size-aware job allocation policy, Level-Spread, specifically for the dragonfly

topology. Prior work on size-aware allocation policies either focus on other network

topologies or demonstrate performance tradeoffs without providing a concrete policy.

Second, we evaluate our allocation policy on a broad range of workloads, machine

configurations, and communication characteristics, instead of focusing on a specific

job type or network setting.

Before describing our Level-Spread policy, in Sec. 3.2.1, we first use a motivational

experiment to demonstrate that the best-performing allocation strategy is different

for jobs of different sizes, and we explain why spreading tasks of a job inside a suitable

network level can be beneficial to their MPI (Message Passing Interface) communica-

tion. We then present our Level-Spread in Sec. 3.2.2.

3.2.1 Motivational Experiment

Intuitively, allocating jobs compactly reduces communication times as it leads to

small network distances. However, in dragonflies, allocating large jobs compactly

(i.e., prioritizing using nodes from the same group when allocating a job) leads to

100

Figure 3·2: We compare random group allocation (RDG), which prioritizes se-
lecting nodes from the same group when allocating a parallel job, and random
node allocation (RDN), which selects nodes randomly across the entire network,
and we simulate two different workloads. Workload 1 (small jobs) benefits from
RDG, whereas workload 2 (large jobs) benefits from RDN.

hot spots on network links. Hence, several studies suggest random allocation for

dragonfly networks (Yang et al., 2016; Jain et al., 2014; Prisacari et al., 2016).

Our simulation results in Fig. 3·2 confirm this phenomenon. The figure compares

the communication time by running two workloads on a 272-node dragonfly machine

with 16 nodes per group. With each workload, we compare two allocation policies

proposed by Jain et al. (Jain et al., 2014): (1) random group allocation (RDG), which

randomly selects a group and allocates the job to all the idle nodes in that group, and

repeats this process if more nodes are required; (2) random node allocation (RDN),

which randomly selects nodes in the entire machine for a job. Each simulation is

further repeated 10 times to reduce the bias due to randomness.

In workload 1, seventeen 16-node jobs are running simultaneously, fully utiliz-

ing the dragonfly machine. RDG outperforms RDN as RDG allocates each job to

a single group, harnessing group-level locality and avoiding interference on global

links. Contrary to workload 1, in workload 2, where four 68-node jobs are running

simultaneously on the same machine, RDN reduces the communication time by 30%

compared to RDG. Although more packets travel on global links with RDN than with

RDG, the RDN policy benefits from a balanced load on the network.

101

These observations inspire us to design a new allocation policy combining the

advantages of both RDG and RDN.

3.2.2 Level-Spread Allocation Policy

Our goal is to minimize the communication time of jobs running on HPC systems

with dragonfly topologies through job allocation. Here, a job consists of multiple

parallel tasks, and each task is defined as an MPI rank. In contrast to existing

dragonfly-specific allocation policies that apply the same allocation strategy (grouping

or spreading) for all jobs (Jain et al., 2014), our Level-Spread policy selects specific

allocation strategies based on the job size along with the machine state.

The principle of our policy is to allocate a job into the smallest network level

(router, group, or machine) where that job can fit in and to spread the parallel tasks

of the job within that level. Selecting the smallest network level benefits a job by

letting it harness node locality and by reducing the communication interference with

other jobs. Spreading the tasks within that level balances the network communication

on the links, and thus, reduces network hot spots. The specific steps are as follows:

• If a job fits within the available nodes that are connected to a single router,

we select the router with the largest number of idle nodes and allocate the job

there.

• If a job cannot fit within a single router but fits within the available nodes in a

single group, we select the most idle group and allocate the job there. To further

reduce load imbalance on local links in this group, we select nodes connected

to different routers in a round-robin manner.

• If a job cannot fit within a single group, we spread the job throughout the entire

network, where we select nodes in different groups in a round-robin manner.

102

Figure 3·3: Three jobs are allocated to a dragonfly machine (g = 9, a = 4, p = 4)
by Level-Spread. Only four groups are drawn for simplicity. The first job (orange)
is allocated to the nodes connected to a single router. The second job (green) is
allocated to different routers in the same group. The third job (blue) is spread to
all groups in a round-robin manner.

Following the terminology used by Kim et al. (Kim et al., 2008), in this article,

p represents the number of nodes connected to a router; a represents the number of

routers in a group; g represents the number of groups in the entire dragonfly machine.

Fig. 3·3 illustrates an example allocation for three jobs. The first 4-node job is

allocated to a single router. The second 8-node job (green) is spread within the group

with the largest number of idle nodes. The third job (blue) is spread throughout the

entire machine, occupying the first six available nodes of every group.

In the implementation of our algorithm, we scan through all routers/groups when

searching for the router/group with the maximum availability. The time complexity

of our algorithm is linear with the number of nodes in the machine, i.e., O(a× g× p),

as follows: Allocating jobs that fit to a single router, is performed in O(a × g + p)

time, where selecting a router is O(a × g) and allocating nodes within the router is

O(p). The allocation of the jobs that do not fit in a single router but do fit within a

group is performed in O(a× g+ a× p). For the remaining jobs, the algorithm simply

103

Table 3.1: Configurations of simulated dragonfly machines.
Machine Parameters Values
Processors per node 2
Nodes per router (p) 4
Routers per group (a) 4 or 8
Number of groups (g) 17 or 33
Total number of nodes (p× a× g) From 272 to 1056
Local link bandwidth 8 Gbit/s
Global link bandwidth 2 Gbit/s, 8 Gbit/s, or 32 Gbit/s
Routing algorithm Adaptive routing
Machine utilization level 90% or 70%

scans through all nodes in O(a × g × p). Owing to its linear time complexity, our

policy can be easily implemented on real dragonfly machines.

3.3 Simulation Methodology

A commonly-used method to examine the performance of dragonfly networks and

to explore various network configurations is to run network simulations (Jain et al.,

2016; Bhatele et al., 2016; Mubarak et al., 2012; Yang et al., 2016; Prisacari et al.,

2014b; Jain et al., 2014; Prisacari et al., 2014a). To evaluate the performance of

different job allocation policies on dragonflies, we run network simulations using the

Structural Simulation Toolkit (SST) (Rodrigues et al., 2011) with different network

configurations and job communication patterns.

3.3.1 Structural Simulation Toolkit (SST)

The SST (Rodrigues et al., 2011) is an open-source architectural framework developed

to model and simulate HPC systems. It supports packet-level network simulations and

has been verified and used in recent studies (Rodrigues et al., 2011; Wilke et al., 2014;

Groves et al., 2016; Hsieh et al., 2011; Underwood et al., 2007). We have extended

SST by adding new allocation policies for the dragonfly network: the baseline policies

and our Level-Spread policy.

104

3.3.2 Simulated Environments

We simulate dragonfly networks with various configurations, listed in Table 3.1. We

select these parameters following previous studies (Prisacari et al., 2014b; Kaplan

et al., 2017; Yang et al., 2016). Our dragonfly machines have 16 or 32 (= p × a)

nodes per group. Thus, Level-Spread will spread jobs that are larger than 16 or 32

nodes to the entire machine. Following the designed structure of dragonfly network

in Ref. (Kim et al., 2008), the routers inside each group are connected to each other

by local links in an all-to-all fashion.

For message routing, we use the adaptive routing algorithm (Kim et al., 2008),

which has been shown to provide good performance in dragonfly networks (Kim et al.,

2008; Yang et al., 2016; Jain et al., 2014). Based on link congestions derived from the

local queue information, adaptive routing dynamically chooses between shortest-path

routing and Valiant routing, which first directs each packet to a randomly-selected

intermediate group and then to the destination group.

Different from job allocation, task mapping controls the order of task placement

onto the processors of the allocated nodes. We use random task mapping to reduce

the bias caused by the task mapping process. We assume that each node has two

processors where each processor executes one task.

We also explore various machine utilization levels, defined as the number of busy

nodes divided by the total number of nodes in the machine. As real HPC systems

are heavily utilized, we test utilization levels of 90% and 70%.

3.3.3 Parallel Workloads

We examine both homogeneous and heterogeneous workloads listed in Table 3.2. For

each homogeneous workload, the number of jobs is determined by machine size and

utilization. For example, for a 1056-node dragonfly machine and 90% utilization

105

Table 3.2: Parallel workloads in our experiments.
Type Workload
Homogeneous workloads Multiple 16-node jobs

Multiple 64-node jobs
Four quarter-machine-size jobs

Heterogeneous workloads 16-node jobs and 64-node jobs
Jobs with randomly-selected sizes

level, the homogeneous workload of 16-node jobs consists of b1056× 90%/16c = 59

such jobs. For each heterogeneous workload, we set the number of 16-node jobs the

same as the number of 64-node jobs. To explore a broader range of job sizes and

numbers, we also generate random workloads each composed of two types of jobs

with randomly-generated sizes (see Sec. 3.4.4).

All jobs in our workloads arrive at the same time. The order of jobs to be allocated,

which is determined by a scheduling algorithm, influences the outcome of allocation.

As allocation is typically performed independent of scheduling, in Sec. 3.4.5 we inves-

tigate two job ordering scenarios: small-job first and large-job first.

The communication structure among the tasks of a job defines the job’s com-

munication pattern. To explore the influence of job communication patterns on the

performance, we use the following six communication patterns, which represent com-

mon communication characteristics in parallel HPC applications (Hertel et al., 1995;

Plimpton, 1995; Antypas et al., 2008; Sreepathi et al., 2016; Asanovic et al., 2009):

• All-to-all: each task sends messages to all other tasks.

• Broadcast: one central task broadcasts messages to all other tasks.

• FFT3d: the communication pattern of doing 3-D fast Fourier transform.

• Halo2d: each task sends messages to its 4 nearest neighbors, forming a com-

munication graph in a 2-D grid.

• Halo3d: each task sends messages to its 6 nearest neighbors, forming a com-

munication graph in a 3-D grid.

106

(a) Workload composed of 16-node jobs. As the jobs fit in a single group, this workload
benefits from the grouping-strategy policies (Level-Spread, Simple, Slurm, RDG), which, in
this case, allocate the tasks of a job into the same group.

(b) Workload composed of 64-node jobs. As the jobs do not fit in a single group, this
workload benefits from spreading-strategy policies (Level-Spread, RDR, RRR, RDN, RRN),
which, in this case, spread tasks of a job into different groups.

Figure 3·4: Communication time of homogeneous workloads on a machine with
16 nodes per group, 17 groups in total, at 90% utilization, and using an appli-
cation message size of 1 KB. Results are normalized with respect to the Simple
allocation policy. Error bars represent the standard deviation. Both (a) and (b)
shows reduced difference among these allocations when the global link bandwidth
increases relative to the local link bandwidth.

• Halo3d26: each task sends messages to its 26 neighbors in 3 dimensions, in-

cluding 6 nearest neighbors and 20 diagonal neighbors.

In order to focus on the communication overhead due to job allocation, we sim-

ulate jobs with only communication without any computation. We also explore the

influence of communication intensity by using 1KB and 100KB job message sizes.

To reduce the influence of randomness introduced by task mapping, routing, and

allocation policies with randomization, we repeat each experiment ten times.

We explore all the combinations of the machine configurations listed in Table 3.1,

workloads listed in Table 3.2, and communication characteristics discussed above. In

107

total, we conduct more than one hundred thousand simulations.

3.3.4 Baseline Allocation Policies

We select the following seven allocation policies (Jain et al., 2014; Slurm, 2016) for

dragonfly networks as baselines for comparison:

• Simple selects idle nodes by following the node label order, which is defined as

follows: the nodes in the first group are labeled as in Figure 3·1 and the labeling

continues with the next group in the network following the same rationale.

Simple policy allocates jobs in a compact manner in general.

• Slurm allocates jobs following the policy for dragonfly implemented in the

Slurm Workload Manager (Slurm, 2016). It first attempts to allocate a job

to the nodes connected to a single router. The first available router with a

sufficient number of idle nodes is chosen, and the nodes connected to that router

are allocated following the label order. If there are no routers with a sufficient

number of idle nodes, it searches for the router with the fewest number of idle

nodes and selects the idle nodes connected to that router following the label

order, and repeats this step as necessary. This allocation policy does not utilize

the group structure of a dragonfly network.

• Random Nodes (RDN) chooses nodes completely randomly from the entire

machine.

• Random Routers (RDR) randomly selects a router and then selects idle

nodes connected to that router following the label order, and repeats this step

as necessary.

• Random Group (RDG) randomly chooses a group and selects the nodes in

that group following the label order, and repeats this step as necessary.

108

• Round Robin Nodes (RRN) starts from the first group, selects the first idle

node following the label order in that group, then moves to the next group and

repeats the same process as necessary.

• Round Robin Routers (RRR) starts from the first group, chooses the first

available router following the label order and selects the idle nodes connected

to that router following the label order. It then moves to the next group and

repeats the same process as necessary.

We also compare our policy with a job-size-aware policy for fat-tree networks,

proposed by Jokanovic et al. (Jokanovic et al., 2015), and adapt their policy to

dragonflies. Their policy places a virtual boundary dividing the machine into two

partitions. When allocating a job whose size is smaller than the number of nodes per

group, the policy allocates the job to a group in the first partition that has enough idle

nodes. When allocating larger jobs, the policy places the job in the second partition,

starting from the last nodes (according to the label order). In this way, this policy

reduces system fragmentation as well as interference between small and large jobs.

The boundary between two partitions is updated dynamically based on the allocation

history. Results for Jokanovic’s policy are discussed in Sec. 3.4.6.

Our Level-Spread policy distinguishes from the existing policies by combining the

grouping and spreading allocation strategy intelligently based on job sizes. Existing

policies only rely on either the grouping or the spreading strategy, and cannot take

full advantage of the specific hierarchical structure of dragonflies.

3.4 Simulation Results for Level-Spread Policy

In this section, we provide our experimental results and analyze the strengths and

weaknesses of the baseline policies as well as our proposed policy. We first display the

results from running homogeneous and heterogeneous workloads. Next, we analyze

109

the impact of communication intensity on performance. In Sec. 3.4.4, we examine

the performance on a broad range of random workloads. In Sec. 3.4.5, we discuss the

influence of scheduling on the performance of Level-Spread. In Sec. 3.4.6, we compare

Level-Spread with a size-aware allocation policy proposed by Jokanovic et al. for

fat-tree networks.

We focus on communication time, which is a better metric than throughput to

evaluate the network performance because it has a more direct impact on job execu-

tion time (Prisacari et al., 2014b). As users generally care about the relative degree

of the delay of HPC jobs, we use normalized values in our evaluation.

3.4.1 Homogeneous Workloads

Figure 3·4 shows the average communication time of the homogeneous workloads. The

results in each subfigure is normalized with respect to the average communication time

using the Simple allocation policy. We simulate workloads that consist of the same

communication pattern, for all six communication patterns described in Sec. 3.3.3.

Each column of subfigures focuses on a communication pattern, while each row focuses

on a different ratio of global link bandwidth to local link bandwidth.

For the 16-node-job workloads in Fig. 3·4(a), because the smallest network level

that a single job can fit in is a dragonfly group, Level-Spread allocates the tasks of

each job within a single group. Level-Spread and policies that select nodes compactly

(Simple, Slurm, and RDG) outperform the policies that spread the tasks across the

entire machine (RDR, RRR, RDN, and RRN) by reducing the communication time

by 15% to 89%. The degree of reduction depends significantly on link bandwidth.

Figure 3·4(b) shows the normalized communication time in workloads composed

of 64-node jobs. As a 64-node job cannot fit in a single dragonfly group, Level-Spread

spreads the tasks of each job across the entire machine. These results demonstrate

that Level-Spread and the policies that spread the tasks (RDR, RRR, RDN, RRN)

110

Figure 3·5: Packet count and stalls at the output port to global or local links
when running the 16-node-job homogeneous workload.

outperform the other policies that select nodes compactly. When the bandwidth

ratio of global-to-local links is 1, which is close to the values in existing dragonfly

machines, Level-Spread reduces the communication time by 22% to 54% compared to

Simple allocation.

By comparing different columns in Fig. 3·4, we see that the performance of the

eight allocation policies is consistent for the six communication patterns. By com-

paring different rows, we see that the increase of global link bandwidth reduces per-

formance difference among allocations.

For all machine parameters and communication patterns we use, we have also

examined the impact of machine utilization. For the two utilization levels, 90% and

70%, our results show negligible impact of utilization level on the relative performance

of different allocation policies.

We collect network statistics in these simulations to understand the underlying

causes of the performance difference. Fig. 3·5 shows the number of packets and stalls

on network links when the machine is running the 16-node-job All-to-all workload.

The green boxes represent 25% to 75% percentiles, the central line represents median,

and the whiskers represent min/max. In this case, the global-to-local link bandwidth

111

Figure 3·6: Packet count and stalls at the output port to global or local links
when running the 64-node-job homogeneous workload.

is 1, job message size is 1KB, and the machine has 17 groups and 16 nodes per group.

Fig. 3·5 shows that Level-Spread and the grouping-strategy policies (Simple, Slurm,

RDG) indeed stress the links less than other policies. Consequently, grouping-strategy

policies lead to fewer stalls, leading to better performance.

Similarly, Fig. 3·6 shows network statistics when the machine is running the 64-

node-job All-to-all workload. Level-Spread and the spreading-strategy policies (RDR,

RRR, RDN, RRN) lead to more packets on both local and global links in terms of

median. However, spreading-strategy policies create smaller variations on packet

count, in agreement with our expectation that spreading-strategy policies balance

load on the links, and thus, reduce hot spots. Therefore, spreading-strategy policies

result in fewer stalls compared to grouping-strategy policies, which explains their

better performance.

To examine the performance of running jobs larger than 64-nodes, we also ran

homogeneous workloads that consist of four jobs, each of quarter-machine-size. For

the four machines ranging from 272 nodes to 1056 nodes, the performance of different

allocations on these workloads are very close to Fig. 3·4(b); so we omit these results

due to space constraints.

112

(a) Each row uses a different global-to-local link bandwidth ratio in a machine with 17
groups and 16 nodes per group. Simple, Slurm, and RDG overlap with each other. In the
first row, RRR’s X-axis position is beyond 5, thus not in the figure.

(b) Each row uses a different machine size. The global-to-local link bandwidth ratio is 1.

Figure 3·7: Communication time of heterogeneous workloads each composed of
n small jobs (16-node) and n large jobs (64-node) with a message size of 1KB. The
number n is determined by the target utilization level of 90%. In each subfigure,
a point represents the results from running the heterogeneous workload using a
specific allocation. The X-axis of the point represents the average communica-
tion time of the small jobs, and the Y-axis represents that of the large jobs. The
star corresponds to the Level-Spread allocation policy; the diamonds correspond
to the grouping-strategy policies; the circles correspond to spreading-strategy poli-
cies. Values are normalized with respect to the Simple allocation policy in each
subfigure.

113

3.4.2 Heterogeneous Workloads

We evaluate the benefits of size awareness in our Level-Spread allocation policy using

heterogeneous workloads that consist of jobs with different sizes. Fig. 3·7 shows the

communication time of jobs in heterogeneous workloads composed of n 16-node and

n 64-node jobs, where n is determined by the machine size and the target utilization

level. We simulate six such workloads, each using jobs from one of the six commu-

nication patterns. We allocate small jobs first; the impact of the allocation order is

studied in Sec. 3.4.5.

In every subfigure, the X-axis of a point represents the average communication

time of the 16-node jobs, and the Y-axis represents that of the 64-node jobs. Values

are normalized with respect to the Simple allocation policy in each subfigure. The

grouping-strategy policies (Simple, Slurm, RDG) are marked with warm-colored di-

amonds, and the spreading-strategy policies (RDR, RRR, RDN, RRN) are marked

with cool-colored circles. Level-Spread is marked with a green star.

All subfigures in Fig. 3·7 show that Level-Spread lies in the bottom-left part,

which demonstrates that Level-Spread reduces the communication time for both small

and large jobs. The X-axis of Level-Spread coincides with the X-axis of diamonds,

showing that the communication time of the 16-node jobs allocated by Level-Spread

remains similar to the Simple, Slurm, and RDG policies that allocate jobs compactly.

Meanwhile, the Y-axis of Level-Spread coincides with the Y-axis of circles in general,

showing that the communication time of the 64-node jobs allocated by the Level-

Spread remains similar to the RDR, RRR, RDN, and RRN policies that spread the

jobs across the machine.

On the other hand, the diamonds in Fig. 3·7 lie in the top-left part of each subfig-

ure, showing that these grouping-strategy policies do not work well for the large jobs.

Circles lie in the bottom-right part of each subfigure, showing that these spreading-

114

Figure 3·8: Varying the communication intensity in terms of message size of the
jobs. Here, we simulate a heterogeneous workload composed of three 16-node jobs
and three 64-node jobs on a 272-node machine. We repeat the simulations with
six communication patterns and different message sizes. From top to bottom, we
gradually increase the ratio of communication intensity between the 16-node jobs
and the 64-node jobs. In the first row, some circles are beyond the range of the
X-axis and thus not displayed.

strategy policies do not work well for the small jobs.

Comparing the columns in Fig. 3·7, we observe the consistency of the benefits of

our Level-Spread policy across different communication patterns. Different rows in

Fig. 3·7(a) illustrate the impact of global link bandwidth on performance. Increasing

the global link bandwidth reduces the difference among the policies but does not

change their ranking.

Different rows in Fig. 3·7(b) explore the impact of machine size on performance.

Level-Spread consistently outperforms the others in all three machine sizes and all

communication patterns. Increasing the machine size magnifies the difference among

allocations. In the case of a 1056-node machine (33 groups), Level-Spread policy

reduces the communication time of the 16-node jobs by 32% (Broadcast) to 64%

(All-to-all).

In these simulations, changing machine utilization level from 90% to 70% has

negligible influence on the relative performance of the eight allocation policies, so we

omit the results for 70% utilization.

115

3.4.3 Impact of Communication Intensity

To explore the influence of communication intensity on the performance of different

allocation policies, for all our workloads and parameter sets listed, we run simulations

using 1KB and 100KB job message sizes. We find that as long as the communica-

tion intensity is homogeneous for all jobs in the workload, the impact of job message

size on the relative performance of different allocation policies is negligible. Simul-

taneously increasing message size of all jobs from 1KB to 100KB only increases the

communication time of every job by approximately 100 folds. Due to the similarity

of these results to Fig. 3·4 and Fig. 3·7, we do not depict these results.

In Fig. 3·8, we explore the cases where the communication intensity of 16-node

jobs is different from the intensity of 64-node jobs. We experiment on a 272-node

machine and simulate different combinations of message sizes.

From top to bottom in Fig. 3·8, we gradually increase the ratio of communication

intensity between the 16-node jobs and the 64-node jobs. These plots demonstrate a

clear trend that increasing the communication intensity of the large (64-node) jobs

worsens the performance of RDR, RRR, RDN, and RRN policies on the small (16-

node) jobs. This is because when the tasks of the small jobs are spread into many

groups, the intensive communication among the tasks of the large jobs drastically de-

lays the communication of the small jobs. Conversely, increasing the communication

intensity of the small jobs significantly worsens the performance of RDR, RRR, RDN,

and RRN policies on the large jobs. This is because in these spreading policies, the

communication among the tasks of the large jobs are delayed by the communication-

heavy small jobs. However, for Simple, Slurm, RDG, and Level-Spread policies, the

small jobs are less affected by the interference with the large jobs because the small

jobs by these policies do not stress global links. These results agree with the findings

of Yang et al. (Yang et al., 2016).

116

Figure 3·9: Counted occurrence of job sizes in the 1000 randomly generated
workloads used in Sec. 3.4.4.

The results in Fig. 3·8 demonstrate the effectiveness of Level-Spread in various

communication intensities. We have also verified that these conclusions on commu-

nication intensities are valid for different machine parameters listed in Table 3.1.

3.4.4 Mixed Job Sizes and Communication Patterns

In Sec. 3.4.2, we have examined the performance of different allocation policies using

workloads composed of 16-node jobs and 64-node jobs. To verify that our results

can be generalized to other job sizes and mixed communication patterns, we use a

broader set of 1000 randomly generated workloads, each composed of two types of

jobs (small and large). The following simulations use a 272-node machine with 16

nodes per group (4 nodes per router and 4 routers per group) and a global-to-local

links bandwidth ratio of 1. Machine utilization level is not fixed and depends on the

generated workload.

To generate the workloads, we first randomly select an integer between 17 and 136

(= 272/2) as the size of the large jobs. We choose the upper limit as 136-node because

an individual job is commonly restricted from occupying more than half of a machine.

Next, a random integer between 2 and 16 is chosen as the size of small jobs. Then,

the number of the small jobs and the number (which can be different) of the large jobs

are selected randomly under the restriction of machine size. Fig. 3·9 shows the overall

117

Figure 3·10: Results from 1000 randomly generated workloads with mixed job
sizes and communication patterns. Each point represents one allocation policy in
one workload. Values are normalized with respect to Level-Spread.

distribution of job sizes in these 1000 random workloads, which qualitatively matches

the distribution of job sizes in real HPC systems (e.g., (Feitelson et al., 2014)). The

communication pattern for each of the two types of jobs is randomly selected. In

these simulations, we allocate small jobs before the large jobs in a given workload,

and start running all jobs simultaneously. All jobs use a message size of 1KB.

In Fig. 3·10, the X-/Y-axis of each point represents the average communication

time of the small/large jobs in one workload using one allocation policy. For each

workload, the values are normalized with respect to the average communication time

achieved using the Level-Spread policy. The dashed green lines split the graph into

four parts, and a blue number shows the percentage of points in each part.

Fig. 3·10 shows that the grouping-strategy allocation policies (Simple, Slurm, and

RDG) benefit the small jobs over the large jobs. Conversely, the spreading-strategy

policies (RDR, RRR, RDN, RRN) benefit the large jobs at a cost of higher small-

job communication overhead. Level-Spread, located at coordinate (1,1), combines

the advantages of both grouping and spreading. Only in 3% of all cases, a baseline

policy is strictly better than Level-Spread, i.e., for both the small and the large jobs.

Meanwhile, in 59% of all cases, Level-Spread is strictly better than the baselines. In

118

the best case, Level-Spread reduces communication time by 71%. Averaging over both

small and large jobs and over all 1000 workloads, Level-Spread reduces communication

time by 16%.

In addition, we run random-workload simulations where only a single commu-

nication pattern is used. For each communication pattern, we generate 100 work-

loads composed of small and large jobs. Our results show that for All-to-all, Halo3d,

Halo3d26, Halo2d and Broadcast workloads the percentage of cases where a baseline

policy is strictly better than Level-Spread is 1%, 1%, 3%, 4%, and 8%, respectively.

3.4.5 Influence of Scheduling on the Level-Spread Policy

In HPC systems, the order of allocating pending jobs is decided by a job scheduler,

and this order affects where the jobs are allocated. For our Level-Spread policy, the

scheduled order of pending jobs may influence the performance due to the job-size-

awareness of Level-Spread. For example, assume a 15-node job and a 50-node job

are pending on an empty 272-node dragonfly system whose nodes per group is 16.

Using Level-Spread, if the 50-node job is scheduled first, it will be spread into different

groups, occupying 2 or 3 nodes in each group. In this case, the 15-node job won’t be

able to fit in any group and will be also spread, converging to the RRN policy.

To evaluate the performance of Level-Spread in an adverse scheduling decision, we

generate 1000 random workloads composed of two types of jobs similar to Sec. 3.4.4,

but this time, we schedule the large jobs before the small jobs. To clarify, we allocate

all jobs following the scheduled order and then start running them simultaneously.

Fig. 3·11 shows that prioritizing large jobs in scheduling slightly moves all the points

of baseline policies toward the left compared to Fig. 3·10, making the performance

of Level-Spread closer to the four spreading-strategy allocations. This shows that

with an adverse scheduling decision where large jobs are scheduled first, Level-Spread

performs at least as well as the baselines.

119

Figure 3·11: In an adverse scheduling decision where the allocation of large
jobs (jobs that cannot fit in a single group) are prioritized, Level-Spread at least
performs as well as the baselines.

Figure 3·12: Comparing Level-Spread policy with Jokanovic’s policy using 1000
random workloads with mixed job sizes and communication patterns.

120

Figure 3·13: Comparing Level-Spread policy with Jokanovic’s policy using 1000
random workloads. Here, large jobs are allocated prior to small jobs.

3.4.6 Comparison with Jokanovic’s Allocation Policy

In the previous sections, we compare Level-Spread with state-of-the-art policies for

dragonfly networks. There are also allocation policies for other network topologies

such as Jokanovic’s policy (Jokanovic et al., 2015) for fat-tree networks (see Sec. 3.3.4).

To compare Level-Spread with Jokanovic’s policy, we simulate 1000 random workloads

similar to Sec. 3.4.4 (parameters are kept the same). Fig. 3·12 shows that in 64% of

the workloads, Level-Spread performs strictly better than Jokanovic’s policy (i.e., for

both small jobs and large jobs). Jokanovic’s policy does not perform strictly better

than Level-Spread in any of these workloads. While Jokanovic’s policy is good for

small jobs, it is significantly worse than Level-Spread for large jobs.

The reason why Jokanovic’s policy does not perform well in dragonfly networks is

that dragonflies are not very sensitive to system fragmentation, owing to its low diam-

eter and the all-to-all inter-group connections. As discussed in Sec. 3.2.1, dragonfly

networks benefit from a more balanced network traffic when we spread large jobs.

Therefore, spreading large jobs, as done by Level-Spread, gives better performance

than Jokanovic’s policy, which groups large jobs together.

Similar to Sec. 3.4.5, we also run simulations on 1000 random workloads where the

121

large jobs are scheduled prior to small jobs. Fig. 3·13 demonstrates that even with

this adverse scheduling decision for Level-Spread, our Level-Spread policy continues

to outperform Jokanovic’s policy.

3.5 Quantifying Network Congestion Using Hardware Perfor-
mance Counters

It has been commonly reported that network congestion is a major cause of per-

formance degradation in HPC systems (Bhatele et al., 2013a; Smith et al., 2016;

Bhatele et al., 2020), leading to extention on job execution time 6X longer than the

optimal(Chunduri et al., 2017). Although performance degradation caused by conges-

tion has been commonly observed, it is not well understood how that impact differs

from application to application. Which network metrics could indicate network con-

gestion and performance degradation is also unclear. Understanding the behavior of

network metrics and application performance under network congestion on large HPC

systems will be helpful in developing strategies to reduce congestion and improve the

performance of HPC systems.

The contributions of this work are listed as follow:

• In a dragonfly-network system, we quantify the impact of network congestion on

the performance of various applications. We find that while applications with

intensive MPI operations suffer from more than 40% extension in their execution

times under network congestion, the applications with less intensive MPI operations

are negligibly affected.

• We find that applications are more impacted by congestor on nearby nodes with

shared routers, and are less impacted by congestor on nodes without shared routers.

This suggests that a compact job allocation strategy is better than a non-compact

122

Figure 3·14: Aries router architecture in a dragonfly network.

strategy because sharing routers among different jobs is more common in a non-

compact allocation strategy.

• We show that a stall-to-flit ratio metric derived from Aries network tiles counters

is positively correlated with performance degradation and indicative of network

congestion.

In the following, we first provide background on the Aries network router. Then,

we introduce our network metrics derived from Aries counters. After that, we evaluate

the value of these metrics in revealing network congestion.

3.5.1 Aries Network Router

Aries is one of the latest HPC network architectures (Alverson et al., 2012). Aries

network features a dragonfly topology (Kim et al., 2008), where multiple routers are

connected by row/column links to form a virtual high-radix router (called a “group”),

and different groups are connected by optical links in an all-to-all manner, giving the

network a low-diameter property, where the shortest path between any two nodes is

only a few hops away.

Figure 3·14 shows the 48 tiles of an Aries router in a Cray XC40 system. The

123

blue tiles include the optical links connecting different groups; the green and grey

tiles include the electrical links connecting routers within a group; and the yellow

tiles include links to the four nodes connected to this router. In the following, we call

the 8 yellow tiles as processor tiles (ptiles); and we call the other 40 as network tiles

(ntiles).

3.5.2 Network Metrics

In each router, Aries hardware counters collect various types of network transmission

statistics (Cray Inc., 2018), including the number of flits/packets travelling on links

and the number of stalls that represent wasted cycles due to network congestion.

In this work, we use a stall-to-flit ratio metric derived from ntile counters. As the

number of network stalls represents the number of wasted cycles in transmitting flits

from one router to the buffer of another router, we expect the stall/flit ratio to be an

indicator of network congestion. For each router, we define the ntile stall/flit ratio

as:

Ntile Stall/Flit Ratio

= Avgr∈0..4,c∈0..7

N_STALL_r_c∑
v∈0..7 N_FLIT_r_c_v

Here, N_FLIT_r_c_v is the number of incoming flits per second to the v-th virtual

channel of the r-th row, c-th column network tile. N_STALL_r_c is the number of

stalls per second in all virtual channels on that ntile. As the stalls and flits collected

from a specific ntile cannot be attributed to a certain node, we take an average over

all the 40 ntiles (represented as “Avg”) and use it as the ntile stall/flit ratio of the

router. Because the 40 ntiles are the first 5 rows and all 8 columns in Fig. 3·14, the

metric takes the average for r ∈ 0..4, and c ∈ 0..7.

In comparison to ntile counters, we also analyze ptile flits per second collected

124

Table 3.3: Aries network counters used in this work (Cray Inc., 2018).

Abbreviation Full counter name
N_STALL_r_c AR_RTR_r_c_INQ_PRF_ROWBUS_STALL_CNT
N_FLIT_r_c_v AR_RTR_r_c_INQ_PRF_INCOMING_FLIT_VCv
P_REQ_STALL_n AR_NL_PRF_REQ_PTILES_TO_NIC_n_STALLED
P_REQ_FLIT_n AR_NL_PRF_REQ_PTILES_TO_NIC_n_FLITS
P_RSP_STALL_n AR_NL_PRF_RSP_PTILES_TO_NIC_n_STALLED
P_RSP_FLIT_n AR_NL_PRF_RSP_PTILES_TO_NIC_n_FLITS

by P_REQ_FLIT_n and P_RSP_FLIT_n, which are request and response flits

received by a node, respectively. In this paper, we always take the sum of these

two metrics when we refer to ptile flit-per-second. Similarly, we refer to the sum of

P_REQ_STALL_n and P_RSP_STALL_n as the ptile stalls per second. In these

metrics, n ∈ 0..3 corresponds to the four nodes connected with this router. Thus,

ptile counters specify the contribution from a certain node. The full names of the

counters we mentioned are listed in Table 3.3. The original counters record values

cumulatively, so we take a rolling difference to estimate instantaneous values.

In addition, when we calculate stall/flit ratio, we ignore the samples where stall-

per-second is smaller than a threshold. This is because when both the stall and the

flit number in a second are too small, the stall/flit ratio could occasionally surge

while it does not reflect influential congestion. We set the threshold as the median

stall-per-second value of data taken over a three-month period from the entire system.

For electrical link ntiles and optical link ntiles, the thresholds are 5410794 and 933,

respectively.

3.6 Experiments for Quantifying Network Congestion

3.6.1 Design of Experiments

We conduct experiments on Cori, which is a 12k-node Cray XC40 system located at

the Lawrence Berkeley National Laboratory, USA. On Cori, network counter data

are collected and managed by the Lightweight Distributed Metric Service (LDMS)

tool (Agelastos et al., 2014). LDMS has been continuously running on Cori and

125

collecting counter data for years for every node. The data collection rate is once per

second.

To characterize job execution performance, we experiment with the following real-

world and benchmark applications:

• Graph500. We run breadth-first search (BFS) and single-source shortest path

(SSSP) from Graph500, which are representative graph computation kernels (Mur-

phy et al., 2010).

• HACC. The Hardware Accelerated Cosmology Code framework uses gravitational

N-body techniques to simulate the formation of structure in an expanding uni-

verse (Heitmann et al., 2019).

• HPCG. The High Performance Conjugate Gradient benchmark models the compu-

tational and data access patterns of real-world applications that contain operations

such as sparse matrix-vector multiplication (Dongarra et al., 2016).

• LAMMPS. The Large-scale Atomic/Molecular Massively Parallel Simulator is a

classical molecular dynamics simulator for modeling solid-state materials and soft

matter (Plimpton, 1995). Our experiments use the in.vacf.2d input from the

package (Sandia Corporation, 2014) and we have only adjusted the number of

steps for our experiments.

• MILC. The MIMD Lattice Computation performs quantum chromodynamics sim-

ulations. Our experiments use the su3_rmd application from MILC (Bauer et al.,

2012). Its communication is characterized by overlapping nearest neighbor ex-

changes in 4 dimensions followed by small message Allreduce.

• miniAMR. This mini-application applies adaptive mesh refinement on an Eulerian

mesh (Heroux et al., 2009).

126

Figure 3·15: The four experimental settings. Each square is a node. Blue squares
run a parallel application. Grey squares run the GPCNeT congestor. White ones
are idle.

• miniMD. This molecular dynamics mini-application is developed for testing new

designs on HPC systems (Heroux et al., 2009).

• QMCPACK. This is a many-body ab initio quantum Monte Carlo code for com-

puting the electronic structure of atoms, molecules, and solids (Kim et al., 2018).

Our experiments use the simple-H2O input from the package (Kim et al., 2014)

and we have only adjusted the number of steps in the input.

To create network congestion on HPC systems in a controlled way, we use the

Global Performance and Congestion Network Tests (GPCNeT) (Chunduri et al.,

2019), which is a new tool to inject network congestion and benchmark communi-

cation performance. When launched on a group of nodes, GPCNeT runs congestor

kernels on 80% of nodes, and the other 20% runs a canary test in a random-ring or

allreduce communication pattern (Chunduri et al., 2019) to evaluate the impact of

the congestor kernel. Our experiments run the RMA Broadcast congestor kernel. By

comparing running the canary test in isolation with running the canary test together

with congestor kernels, GPCNeT reports the intensity of congestion by the following

127

impact factor metrics: bandwidth ratio, latency ratio, and allreduce bandwidth ratio.

For example, bandwidth ratio represents the canary test’s effective bandwidth when

running with congestor, divided by the bandwidth when running in isolation.

We quantify the impact of network congestion on applications by comparing the

execution time of the applications when running them with or without congestors. We

also differentiate between endpoint congestion and intermediate congestion. Endpoint

congestion refers to the congestion generated by traffic from other nodes that share

the same routers as our application. Intermediate congestion refers to the congestion

caused by traffic not from nodes sharing the same routers but from intermediate links.

We design experiments as follows.

Assume we are going to run an application on N nodes (we use N = 7 in Fig. 3·15

as an example, and we actually experiment with N = 64), then we reserve 3N nodes

from the system. Most of these 3N nodes are groups of consecutive nodes as the

Slurm scheduler on Cori is configured to prioritize reserving consecutive nodes. We

have four experimental settings shown in Fig. 3·15 and described below:

• In Setting I (“Continuous”), we run the application on N nodes continuously se-

lected from the list (shown in blue), and the other 2N nodes are left idle.

• In Setting II (“Spaced”), we run the application on N nodes selected by choosing

every other node from the list.

• In Setting III (“Continuous+Congestor”), besides the application in a “continuous”

way, we simultaneously run GPCNeT on another N nodes selected in a “spaced”

manner (shown in grey). In this case, the application is mostly affected by inter-

mediate congestion because the majority of blue nodes do not share routers with

grey nodes.

• In Setting IV (“Spaced+Congestor”), the nodes for the application and the nodes

128

Figure 3·16: To mitigate variations from background traffic, we repeat experi-
ments with the placement of application/congestor rotationally shifted (first three
shifts for Setting III are drawn).

for the congestor are interleaved. In this case, the application is also affected by

endpoint congestion because sharing router among application nodes and congestor

nodes is common. As an example, assume the dashed line shows the four nodes

connected to the same router, then, the two grey nodes create endpoint congestion

on the other two blue nodes. Although every four nodes are not always connected

to the same router, because Cori’s scheduler prioritizes allocating contiguous nodes

for us, nodes sharing the same router are common.

In our experiments, we always run an application on 64 nodes, and the congestor

also occupies 64 nodes. We did not experiment with larger workloads to avoid too

much impact on other users in a production system. All experiments run on Haswell

nodes and use all 32 cores of each node. The same inputs are used during different

runs of an application.

Since the experiments are done in a production system, network traffic generated

by jobs from other users may go through the routers we use. To reduce the impact of

129

Graph500 HACC HPCG LAMMPS MILC miniAMR miniMD QMCPACK
Applications in different experiment settings

0.5

1.0

1.5

2.0

2.5

3.0
No

rm
al

ize
d

Ex
ec

ut
io

n
Ti

m
e

(s
ep

ar
at

el
y

fo
r e

ac
h

ap
pl

ica
tio

n) I:Continuous
II:Spaced

III:Continuous+Congestor
IV:Spaced+Congestor

(a)
LAMMPS

Experiment settings
0
1
2

4

6

8

10

12

LA
M
M
PS

 E
xe

cu
tio

n
Ti
m
e
(n
or
m
al
ize

d)

(b)

Figure 3·17: Normalized application execution time under four experimental set-
tings. Normalization is done separately for each application. Each bar summarizes
the 10 runs for an application. Errorbars are min/max; edges of box are the first
and third quartiles; middle line is the median. Setting IV of LAMMPS exceeds
the range and it is separately drawn in (b).

this background traffic, we repeat each setting 10 times by rotationally shifting the

application’s and congestor’s placement, as illustrated in Fig 3·16. Each shift rotates

1/10 of the node list length.

In addition to the experiments discussed above, we also experiment with GPCNeT

alone without our applications, and the details are discussed in Section 3.6.4.

In the following, we first analyze the impact of network congestion on applica-

tions in Section 3.6.2. Next, we show the correlation between network metrics and

application execution time in Section 3.6.3. Then, we show that ntile stall/flit ratio

is correlated with network congestion intensity in Section 3.6.4.

3.6.2 Impact of Network Congestion on Applications

Figure 3·17 summarizes the impact of network congestion on applications. The exe-

cution times are normalized separately for each application with regard to the median

value in Setting I. Because LAMMPS’s values exceed the range of Fig. 3·17(a), we

also draw them separately in Fig. 3·17(b).

These results demonstrate that network congestion has diverse impact on ap-

plications. Some applications such as Graph500 and HPCG are negligibly affected

130

by congestion, where the median execution time difference between with and with-

out congestor is less than 10%. On the other hand, applications including HACC,

LAMMPS, MILC, miniAMR, and miniMD are significantly affected by congestion,

where the median performance with endpoint congestion (Setting IV) is 0.4X to 7X

higher than the performance without congestion (Setting II). QMCPACK shows a

medium-level impact from congestion, where endpoint congestion extends the me-

dian execution time by 11%. The slightly shorter execution time in Setting II of

HACC and Setting IV of HPCG should be due to variations caused by background

traffic.

To understand why applications are impacted differently, we use CrayPat (Cray

Inc., 2020) to profile the MPI characteristics of the applications (in separate runs

without congestor). Table 3.4 shows the percentage of time spent on certain MPI

operations, and Table 3.5 shows the aggregate bytes transferred per second, average

message size, and MPI call counts.

From Table 3.4, we see that the applications impacted more by congestion, in-

cluding HACC, LAMMPS, MILC, miniAMR, and miniMD, share a common feature

of more time spent on MPI operations. On the contrary, HPCG and QMCPACK

have only 3.7% and 6.0% time on MPI operations, respectively. In addition, more

MPI collective operations (such as MPI_Allreduce, MPI_Bcast) implies more inten-

sive communication, making the application sensitive to congestion. Therefore, as

LAMMPS spends 25.4% time on MPI_Allreduce, larger than any other applications,

its execution time is extended by more than 7X in Setting IV. Similarly, QMCPACK

has 5.4% time on MPI_Allreduce, higher than the 0.2% from HPCG, which explains

why QMCPACK is impacted more by congestion than HPCG. On the other hand,

Graph500 has only 2.3% time on MPI_Allreduce, and less than 8% time on all other

MPI calls except for MPI_Test, which explains why it is only slightly affected by

131

T
ab

le
3.
4:

A
pp

lic
at
io
n

M
P
I
pr
ofi

le
s
co
lle
ct
ed

by
C
ra
yP

at
.

“M
P
I
O
pe

ra
ti
on

”
sh
ow

s
th
e
pe

rc
en
ta
ge

of
ex
ec
ut
io
n

ti
m
e
sp
en
t
on

M
P
I
op

er
at
io
ns
,
an

d
th
e
M
P
I
ca
ll

br
ea
kd

ow
n

is
sh
ow

n
in

ot
he
r
co
lu
m
ns
.

“M
P
I_

(o
th
er
)”

is
th
e

su
m

of
ot
he
r
M
P
I
ca
lls

no
t
sp
ec
ifi
ed

he
re
.
A
pp

lic
at
io
ns

w
it
h
m
or
e
ti
m
e
sp
en
t
on

M
P
I
op

er
at
io
ns
,
es
pe

ci
al
ly

M
P
I

co
lle
ct
iv
e
op

er
at
io
ns

(M
P
I_

A
llr
ed
uc
e,

M
P
I_

B
ca
st
,
M
P
I_

B
ar
ri
er
,
et
c.
),

ar
e
im

pa
ct
ed

m
or
e
by

ne
tw

or
k
co
ng

es
ti
on

th
an

ap
pl
ic
at
io
ns

w
it
h
le
ss

in
te
ns
iv
e
M
P
I
op

er
at
io
ns
.

A
pp

lic
at
io
n

M
P
I

O
pe

ra
ti
on

M
P
I

_
A
llr
ed
uc
e

M
P
I_

Se
nd

re
cv

(o
r
Se
nd

,I
se
nd

)
M
P
I

_
B
ca
st

M
P
I_

Te
st

(o
r
Te

st
an

y)
M
P
I_

W
ai
t

(o
r
W
ai
ta
ll)

M
P
I

_
B
ar
ri
er

M
P
I_

(o
th
er
)

G
ra
ph

50
0

31
.4
%

2.
3%

2.
6%

0.
2%

21
.3
%

<
0.
1%

4.
4%

0.
6%

H
A
C
C

67
.1
%

<
0.
1%

0.
2%

0
0

66
.2
%

0
0.
7%

H
P
C
G

3.
7%

0.
2%

2.
1%

0
0

1.
2%

0
0.
2%

LA
M
M
P
S

47
.3
%

25
.4
%

8.
6%

<
0.
1%

0
12

.2
%

<
0.
1%

1.
1%

M
IL
C

61
.9
%

1.
9%

0.
6%

<
0.
1%

0
58

.5
%

<
0.
1%

0.
9%

m
in
iA

M
R

26
.8
%

9.
2%

0.
5%

<
0.
1%

0
14

.2
%

0
2.
9%

m
in
iM

D
83

.4
%

0.
5%

82
.5
%

0
0

0
0.
2%

0.
2%

Q
M
C
PA

C
K

6.
0%

5.
4%

<
0.
1%

<
0.
1%

<
0.
1%

<
0.
1%

0.
5%

0.
1%

132

T
ab

le
3.
5:

E
xe
cu
ti
on

ti
m
e,

ag
gr
eg
at
e
da

ta
tr
an

sf
er

ra
te
,
av
er
ag

e
m
es
sa
ge

si
ze
,
an

d
M
P
I
ca
ll
co
un

ts
co
lle

ct
ed

by
C
ra
yP

at
.
C
ol
um

ns
st
ar
ti
ng

w
it
h
“M

P
I_

”
ar
e
br
ea
kd

ow
n
of

“M
P
I
C
al
l”.

N
on

-d
om

in
an

t
M
P
I
ca
ll
ty
pe

s
ar
e
no

t
lis
te
d.

“E
xe
c
T
im

e”
is

th
e
m
ed
ia
n
of

th
e
10

ru
ns

in
Se
tt
in
g
I.

“A
gg

D
at
a
Tr

an
s
R
at
e”

sh
ow

s
th
e
ag

gr
eg
at
e
by

te
s
of

da
ta

tr
an

sf
er
re
d
pe

r
se
co
nd

.

A
pp

lic
at
io
n

E
xe
c

T
im

e
A
gg

.
D
at
a

Tr
an

s.
R
at
e

Av
g
M
sg

Si
ze

M
P
I
C
al
l

M
P
I

_
A
llr
ed
uc
e

M
P
I_

Se
nd

re
cv

(o
r
Se
nd

,I
se
nd

)
M
P
I_

Te
st

(o
r
Te

st
an

y)
M
P
I_

W
ai
t

(o
r
W
ai
ta
ll)

G
ra
ph

50
0

12
2
s

50
M
B
/s

9
K
B

45
,7
24

,0
42

7,
25

1
60

7,
40

9
43

,8
52
,0
63

2
H
A
C
C

69
s

10
0
M
B
/s

6
M
B

7,
25

2
41

1,
50

4
0

2,
74

8
H
P
C
G

68
s

3
M
B
/s

4
K
B

12
8,
94

0
55

5
40

,3
53

0
40
,3
53

LA
M
M
P
S

15
s

5
M
B
/s

70
B

3,
01

2,
40

9
12

5,
17

0
89

3,
84

5
0

81
2,
67

3
M
IL
C

87
s

90
M
B
/s

16
K
B

10
,8
42

,8
75

13
,2
24

52
8,
07

6
0

1,
05

6,
15

2
m
in
iA

M
R

23
s

40
M
B
/s

22
K
B

78
9,
95

8
10

,3
26

18
,3
66

0
35

,5
40

m
in
iM

D
65

s
90

M
B
/s

3
K
B

2,
73
6,
07

4
4,
81

0
2,
06

4,
03

6
0

0
Q
M
C
PA

C
K

67
s

60
0
K
B
/s

13
K
B

8,
16

0
2,
00

4
39

0
2,
69
7

19
5

133

(a) HACC (b) LAMMPS

(c) MILC (d) miniAMR

Figure 3·18: There are positive correlations between ntile stall/flit ratio and
application execution time. A cross represents the average of 10 runs for each set-
ting. Errorbars are standard errors. The dashed line is a linear fit. These positive
correlations suggest that ntile stall/flit ratio metric is indicative of performance
degradation caused by network congestion.

134

congestion.

These findings suggest several key criteria for predicting congestion’s impact on

an application. The first is the amount of time an application spends performing MPI

operations. Intuitively, an application not spending much time on communication will

not be sensitive to congestion. Secondly, the type of communication matters. In our

experiments, when collectives such as MPI_Allreduce, MPI_Bcast, and MPI_Barrier

occupy more than 5% of time, we regard the application as having intensive MPI oper-

ation and expect it to be sensitive to congestion. Lastly, MPI_Wait(all) is important

as they often indicate synchronization points where the slowest communication domi-

nates performance (as is the case with MILC). Conversely, though Graph500 performs

reasonable amounts of communication, the communications are uncoupled from each

other as MPI_Test(any) calls indicate communication events that are completely

independent of many other communications. Applying this understanding to Table

II, we consider HACC, LAMMPS, MILC, miniAMR, miniMD, and QMCPACK as

having intensive MPI operations.

From Table 3.5, we see the relationship between average message size and sen-

sitivity to congestion is not clear. HACC, LAMMPS and MILC use very different

message sizes but each seems sensitive to congestion. Other studies have found that

small-size, latency-sensitive communications are more sensitive to congestion than

bandwidth benchmarks typically with large message size (Chunduri et al., 2019).

However, this relationship is not as clear cut for real applications.

Based on our results, aggregate data transfer rate is not indicative of congestion

sensitivity either. For example, although Graph500 transfers data at 50 MB/s, it is

less impacted by congestion than LAMMPS and QMCPACK which transfer data at

merely 5 MB/s and 600 KB/s, respectively.

From Fig. 3·17, we also notice that the applications are more impacted by endpoint

135

congestion than by intermediate congestion. Comparing Setting II with IV, we see

HACC, LAMMPS, MILC, miniAMR, miniMD, and QMCPACK are all significantly

impacted by endpoint congestion. Comparing Setting I with III, we see only MILC

and miniMD are significantly impacted by intermediate congestion. This observation

suggests that a compact job allocation strategy is better than a non-compact one

because a non-compact allocation increases a job’s probability to share routers with

other jobs and are more likely to suffer from endpoint congestion.

3.6.3 Correlating Network Metrics with Application Performance

From the same experiments in Section 3.6.2, we correlate execution time with ntile

stall/flit ratio in Fig. 3·18. Each cross represents the average value of the ten runs

in each setting, and errorbars show their standard error. The ntile stall/flit ratio is

calculated using the formula in Section 3.5.2, and averaged only over routers that

contain nodes running our application. The metric is also averaged over the duration

of the application.

In each case, we notice a positive correlation between job execution time and ntile

stall/flit ratio, which demonstrates that this metric is indicative of application per-

formance. Because the ntile counters collect not only local communications directly

related to the host router but also communications that travel through the host router

as an intermedium, our metric is only statistically correlated with job performance

and suffers from variations caused by background traffic.

We also show the stall per second values on either ntiles or ptiles in Fig. 3·19. The

stall count is averaged over routers and durations. While ntile stall per second shows

a similar trend as ntile stall/flit ratio, the ptile stall per second shows a negative

correlation with execution time. Although this negative correlation seems counter-

intuitive at first thought, it in fact implies that ntile links, instead of the ptile-to-node

links, are the communication bottleneck in these experiments.

136

(a) miniMD - Ntile Stall (b) QMCPACK - Ntile Stall

(c) miniMD - Ptile Stall (d) QMCPACK - Ptile Stall

Figure 3·19: There are positive (negative) correlations between ntile (ptile) stalls
per second and application execution time, respectively. The negative correlations
in (c) and (d) imply that ptile-to-node links are not the bottleneck of the network.

137

When ntiles are the bottleneck, performance degradation causes an application

to run slower and receive less messages per second. As a result, there are less flits

per second in the ptile-to-node links. Less flits per second leads to less stalls per

second on ptiles since these ptile-to-node links are not the bottleneck. Another way

to explain the phenomenon is that the convergence of traffic occurs before the final

hop within a switch. Once traffic makes it past the bottleneck, the rest of the path

is relatively clear. This explains the negative correlation we see in Fig. 3·19(c,d).

Therefore, we conclude that ntile metrics are better indicators for congestion than

ptile metrics since ntiles links, rather than ptiles, are mostly the bottleneck.

3.6.4 Correlating Network Metrics with Network Congestors

We also conduct experiments that run GPCNeT on either 16, 32, 64, 86, 106, or

128 nodes without our applications. We use the impact factor metrics reported by

GPCNeT to quantify the intensity of congestion created by GPCNeT. Figure 3·20

shows the correlation between impact factor (bandwidth ratio) and ntile stall/flit

ratio. Each point represents an experiment run. The ntile stall/flit ratio is averaged

similarly as before. We see a rough correlation between GPCNeT congestion intensity

(quantified by impact factor) and ntile stall/flit ratio, which demonstrates that ntile

stall/flit ratio is indicative of network congestion created by GPCNeT.

3.7 A Network-Data-Driven (NeDD) Job Allocation Policy

Section 3.6 reveals that certain network metrics are indicative of the appearance of

network contention on HPC systems, which inspires us to design a job allocation

policy that avoids network contention hot spots by extracting network congestion

information from hardware counters at runtime.

Therefore, we propose the following Network-Data-Driven (NeDD) job allocation

policy for HPC systems. This policy prioritizes allocating network-sensitive jobs to

138

0 5 10 15 20
GPCNeT Impact Factor (BWAvg)

10

20

30

40

50

Nt
ile
 S
ta
ll/
Fl
it
Ra

tio

r^2=0.9216-node
32-node
64-node
86-node
106-node
128-node

Figure 3·20: Correlating ntile stall/flit ratio with GPCNeT congestor impact
factor. Different colors represent experiments where we run GPCNeT on different
number of nodes.

routers with less network traffics. As shown in Fig. 3·21, at the time of allocating

a job, our NeDD policy first reads the latest network traffic intensity on each node

quantified by average bytes of communication per second. Next, the policy sorts all

available routers by their network traffic summed over all nodes linked to the routers.

For network-sensitive jobs, our policy will allocate the job to routers with less traffic,

and for network-insensitive jobs, our policy will allocate the job to routers with more

traffic.

To apply this policy, we assume the information regarding whether a job is

network-sensitive or not is determined in advance and saved in a lookup table. Our

experiments and analysis in Section 3.6.2 provide one approach to obtain this in-

formation by profiling the percentage of time a job spent on MPI collective opera-

tions (including MPI_Allreduce, MPI_Bcast, etc.).

Our NeDD policy quantifies the network traffic intensity of a router according to

the traffic summed over all nodes linked to the routers, as depicted in Fig. 3·22. We

139

Figure 3·21: The Network-Data-Drive (NeDD) job allocation policy for dragonfly
systems.

design the policy in this way because our experiments in Section 3.6.2 demonstrate

that network congestion created by neighbors (i.e., nodes connected to the same

router) has much more significant impact on performance than non-neighbors. In

Fig. 3·22, we show the case where four nodes are linked to each router, which follows

the Aries network architecture implemented in the Cori system. Nonetheless, our

NeDD policy can definitely be applied to systems where a router is connected with a

different number of nodes.

3.8 Evaluting the NeDD Policy on Large HPC Systems

3.8.1 Experimental Design

We evaluate our NeDD policy on a large HPC systeml, Cori. The experiment design

is shown in Fig. 3·23. To conduct the experiment, we first get N idle nodes (squares

140

Figure 3·22: The NeDD policy quantifies the network traffic intensity of a router
according to the traffic summed over all nodes linked to the routers.

in the figure) from the system1. Then, we run a network congestor using the GPC-

NeT on C nodes (grey squares). After that, we run a parallel application on M

nodes (green) using different job allocation policies and compare the execution time

of the application under different allocation policies. A node the runs our experiment

script and the LDMS storage daemon (purple) is prevented from running either the

congestor or the application because the LDMS storage daemon is collecting the net-

work counter data from all the other nodes and may creates network contention on

this node.

We use the HPCG, LAMMPS, MILC, miniAMR, miniMD, QMCPACK applica-

tions detailed in Section 3.6 for this experiment.

We compare a number of different allocation strategies:

• High-Traffic-Router allocates a job to routers with high network traffics.

This is what our NeDD policy will do to network-insensitive applications.

• Random policy allocates a job randomly among available nodes.
1The Slurm scheduler running on Cori is configured to prioritize selecting a contiguous set of

nodes for a batch job. However, because we are experimenting on a production system, it is not easy
to get a single contiguous set of nodes when N is large, and we actually get several sets of nodes for
a batch job, where each set is a contigous set of nodes.

141

Figure 3·23: Our experimental design to evaluate the NeDD policy.

• Low-Stall-Router is a policy similar to NeDD. However, the Low-Stall-Router

policy prioritizes allocating network-sensitive jobs to routers with lower network

stall count (summed over all ports in this router) instead of routers with less

network traffic.

• Fewer-Router allocates a policy into fewer number of routers. In other word,

it prioritizes choosing routers that is connected to more idle nodes.

• Low-Traffic-Router allocates a job to router with low network traffics. This

is what our NeDD policy will do to network-sensitive applications.

In our experiments, we also record the execution time of the applications when we do

not run the network congestor (and allocated to the nodes following the Fewer-Router

policy). This case is denoted as “No-Congestor”.

3.8.2 Experimental Results

Our experiment results are shown in Fig. 3·24. These experiments use N = 200 nodes

in total (not including the node running LDMS daemon), run network congestor on

142

(a) miniMD (b) LAMMPS (c) MILC

(d) miniAMR (e) QMCPACK (f) HPCG

Figure 3·24: Results comparing different job allocation policies. Errorbars show
the minimum and maximum execution time in the ten runs for each application.
Colored area shows the first and third quartiles. The dashed black line shows the
median, and the red point shows the average.

143

C = 64 nodes, and run a parallel application on M = 32 nodes.

As demonstrated in Fig. 3·24(f), for a network-insensitive application like HPCG,

the impact of network congestion on the application performance is neglibile, and all

allocation policies perform similarly. Especially, the variance of execution time with

each allocation policy is similar to that in the No-Congestor case. This proves that

our NeDD allocation policy can safely allocate the job to high-traffic-router without

causing performance degradation while researving the low-traffic-routers to network-

sensitive jobs.

On the other hand, as demonstrated in Fig. 3·24(a), for a network-sensitive ap-

plication like miniMD, network congestion leads to an extention on job execution

time by up to 5x (when comparing the average execution time for Random and No-

Congestor cases), and the Low-Traffic-Router policy is performing 30% better than

the Random policy, 29% better than the Lower-Router-Stall policy, and 7% better

than the Fewer-Router policy. This proves that our NeDD policy which allocates

network-sensitive jobs to low-traffic routers improves the performance of these jobs

significantly.

In conclusion, we propose a Network-Data-Driven (NeDD) job allocation policy

for HPC systems. Our NeDD policy is composed of three components: 1) a network

measurement component that quantifies the network traffic intensity in the HPC

system; 2) an application profiling component that determines whether an application

is sensitive to network congestion; 3) a congestion-avoidance mechanism to allocate

jobs that mitigate network congestion. Our current version of the policy applies a

straightforward strategy to realize these three components. However, it is possible to

improve our policy in future works by replacing one of these components by better

algorithms. For example, other approaches to quantify network congestion in HPC

systems can be considered (Jha et al., 2020).

144

Chapter 4

Conclusions and Future Work

The large energy cost and resource contention pose a serious challenge to the growth of

HPC systems. To meet that challenge, in this work, we design intelligent middleware

to improve the energy cost efficiency and performance of HPC systems. Our mid-

dleware enables HPC system to participate in demand response programs with QoS

assurance of job performance, and the middleware also mitigates resource contention

and improves performance through novel job allocation strategies.

4.1 HPC System Demand Response Participation

HPC systems are large power consumers, but the flexibility of job scheduling and

the capability of server power capping enable them to regulate their total power

consumption at a short time-scale. HPC systems’ capability to significantly regulate

their power renders them particularly good candidates for demand response programs,

especially the regulation service where the participant needs to follow a target power

that changes every few seconds. Prior works developed policies that enable HPC

systems to participate in regulation service but without providing assurances on the

QoS of computing jobs (Chen et al., 2014; Chen et al., 2019). To fill this gap, in this

thesis, we demonstrate that, when equipped with well-designed power management

policies and bidding policies, HPC systems benefit from participation in demand

response programs while providing QoS guarantees on job performance. We propose

QoSG and AQA policies that regulate HPC systems’ power consumption to follow

145

a power target when providing regulation service reserves. These policies provide

QoS assurance by optimizing some scheduling parameters based on queueing theory.

Through both simulations and real-system experiments with a broad set of workload

traces, we demonstrate that our policies reduce the electricity cost of HPC systems by

10-50% while abiding by all QoS constraints, outperforming baseline policies proposed

in prior works.

Future directions in this area include relaxing the assumptions in our work, en-

abling multi-site HPC system cooperation, and considering interaction with the elec-

tricity grid.

First, since our existing policies assume the knowledge of job arrival probability

distributions, it would be helpful to understand and improve on situations where job

arrival distributions deviate from the assumed models. If there are periodic trends or

other predictable trends in job arrival patterns, a predictor could also be included to

improve the performance of HPC demand response participation. In addition, since

our policies assume the knowledge of jobs’ expected execution time and power usage,

it would be useful if this need for accurate job profiling can be removed or replaced

by strategies that only need approximate knowledge.

Second, since the electricity price and the demand response dynamics among dif-

ferent geological locations are different, coordinating multiple HPC systems to par-

ticipate in demand response together could be more beneficial than each HPC system

participating in demand response individually. For example, when electricity price is

low or consumption demand is high at one location, HPC systems at this location

could accept jobs redistributed from other HPC systems. Designing some optimized

job redistribution strategy in this way could further reduce the electricity cost of

multi-site HPC systems. However, job redistribution does not come at no cost, thus,

the monetary or other forms of cost of job redistribution should be considered when

146

proposing these strategies.

Third, not only HPC systems need to optimize their cost, but independent system

operators on the electricity grid side also need to optimize their cost, so exploring the

interplay between the independent system operators and HPC systems could offer

some insights in optimizing their cost together. Besides, some demand response pro-

grams offer a bidding mechanism where the price is set from bidding among multiple

participants. Designing bidding strategies for HPC systems or improving the bid-

ding mechanism from the electricity grid perspective are both interesting directions

deserving exploration.

4.2 Mitigating HPC Network Contention through Job Allo-
cation

Network contention is a major cause of performance degradation in modern HPC

systems. Designing intelligent job allocation strategies could help in mitigating the

impact of network contention on application performance.

On dragonfly networks, there are two allocation strategies to reduce communica-

tion latency: one is compactly allocating the tasks of a parallel application to harness

locality, and the other is spreading the tasks across the machine to balance congestion

on network links. Existing allocation policies resemble only one of these two strate-

gies. To combine the benefits of these two strategies, we propose the Level-Spread

allocation policy, which finds the lowest network level (router, group, or machine) a

job can fit in and spreads the job throughout that level. Therefore, our allocation

policy combines the advantages of existing policies for dragonfly networks. To evalu-

ate Level-Spread, we conduct extensive simulations using SST with a broad range of

workloads. We compare Level-Spread with eight baseline allocation policies, and con-

clude that Level-Spread outperforms the state-of-the-art by 16% on average (and up

147

to 71%) in terms of communication time. To examine the applicability of our policy

under different conditions, we conduct simulations with various dragonfly configu-

rations, global link bandwidths, job communication intensities, and communication

patterns. Our results validate the generality of Level-Spread, and we show that the

performance gain from our policy increases when the machine size increases or the

global link bandwidth decreases.

To mitigate network contention on HPC systems, we also conduct some experi-

ments to quantify the impact of network congestion on job performance and network

metrics. Our experiments show that applications demonstrate substantial difference

under network congestion. Applications with intensive MPI operations (especially

the applications that spend large portion of time on MPI collectives) suffer from 0.4X

to 7X extension in execution times under network congestion, while applications with

less intensive MPI operations are negligibly affected. By analyzing Aries network

counters, we observe a positive correlation between application execution time and

some network metrics counting stalls or flits, which demonstrates that these metrics

are good indictors of network congestion and job performance.

Based on that finding, we design a Network-Data-Driven job allocation policy for

HPC systems. The policy collects the latest network metrics and prioritize allocat-

ing the network-sensitive applications onto routers with less network traffics. Our

evaluation on a large HPC system shows that the policy improve the performance of

network-sensitive applications by up to 30% compared to baseline policies, while the

performance of network-insensitive applications degrades for less than 3%.

Future directions in this area include generalizing our allocation strategies to other

network topologies, co-optimizing job allocation with job scheduling strategies, and

improving the Network-Data-Driven job allocation policy with more advanced algo-

rithms.

148

First, although our Level-Spread and Network-Data-Driven job allocation policies

are proposed and evaluated on dragonfly-topology HPC systems, they could be gen-

eralized to other network topologies following similar intuitions. For example, fat-tree

network is similar to dragonfly network in its low-diameter property, so Level-Spread

allocation could also help harness node locality and mitigate link congestion in fat-

tree networks. Also, since network counters are deployed in many HPC systems other

than dragonfly topology, our Network-Data-Driven policy could also be applied there.

Second, our work focuses on job allocation (where to allocate a job) and does

not consider job scheduling (when to allocate a job). However, since job allocation

and scheduling affect each other, co-optimizing the allocation and scheduling in HPC

systems could offer more performance improvement than separately optimizing the

two components. For example, when there are two jobs in the queue, it could be

more beneficial the allocate the more-network-sensitive job first to routers with less

network traffic instead of later. That is because if we allocate that job later than

the other job, the other job may take the less-traffic routers while the job does not

benefit much from those less-traffic routers.

Third, our Network-Data-Driven policy is proposed to simply avoid the high-

traffic routers as it is an intuitive way to mitigate network contention. However,

since existing technologies allow us to collect a large amount of network data from all

nodes with high granularity, more advanced algorithms could be applied to extract

information from the data and further improve job allocation and scheduling. For

example, time-series analysis or machine learning could be applied to predict job

performance and optimize job allocation and scheduling in HPC systems.

References

Agelastos, A. et al. (2014). The lightweight distributed metric service: A scalable
infrastructure for continuous monitoring of large scale computing systems and ap-
plications. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pages 154–165.

Ahmed, K., Liu, J., and Wu, X. (2017). An energy efficient demand-response model
for high performance computing systems. In 2017 IEEE 25th International Sympo-
sium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), pages 175–186.

Aksanli, B. and Rosing, T. (2014). Providing regulation services and managing data
center peak power budgets. In 2014 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 1–4.

Alverson, B., Froese, E., Kaplan, L., and Roweth, D. (2012). Cray xc series network.
https://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf.

Amazon (2020). Amazon ec2 spot instances. https://aws.amazon.com/ec2/spot.

Antypas, K., Shalf, J., and Wasserman, H. (2008). NERSC - 6 workload analysis
and benchmark selection process. https://www.osti.gov/biblio/938789.

Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J.,
Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., and Yelick, K.
(2009). A view of the parallel computing landscape. Communications of the
ACM, 52(10):56–67.

Bailey, D. H., Barszcz, E., Barton, J. T., et al. (1991). The nas parallel benchmarks.
Proceedings of the 1991 ACM/IEEE Conference on Supercomputing, pages 158–165.

Bauer, G., Gottlieb, S., and Hoefler, T. (2012). Performance modeling and compara-
tive analysis of the milc lattice qcd application su3_rmd. In 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012),
pages 652–659.

Belka, M., Doubet, M., Meyers, S., Momoh, R., Rincon-Cruz, D., and Bunde, D. P.
(2017). New link arrangements for dragonfly networks. IEEE International Work-
shop on High-Performance Interconnection Networks in the Exascale and Big-Data
Era (HiPINEB), pages 17–24.

149

https://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf
https://aws.amazon.com/ec2/spot
https://www.osti.gov/biblio/938789

150

Bertsimas, D., Paschalidis, I. C., and Tsitsiklis, J. N. (1999). Large deviations
analysis of the generalized processor sharing policy. Queueing Systems, 32(4):319–
349.

Bhatele, A., Jain, N., Livnat, Y., Pascucci, V., and Bremer, P. (2016). Analyzing
network health and congestion in dragonfly-based supercomputers. In 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages 93–
102.

Bhatele, A., Mohror, K., Langer, S. H., and Isaacs, K. E. (2013a). There goes the
neighborhood: Performance degradation due to nearby jobs. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, SC ’13, pages 41:1–41:12, New York, NY, USA. ACM.

Bhatele, A., Mohror, K., Langer, S. H., and Isaacs, K. E. (2013b). There goes the
neighborhood: performance degradation due to nearby jobs. Proceedings of the
International Conf. on High Performance Computing, Networking, Storage and
Analysis, (SC), pages 41:1—-41:12.

Bhatele, A., Thiagarajan, J. J., Groves, T., Anirudh, R., Smith, S. A., Cook, B., and
Lowenthal, D. K. (2020). The case of performance variability on dragonfly-based
systems. In IEEE International Parallel and Distributed Processing Symposium
(IPDPS).

Bhatele, A., Titus, A. R., Thiagarajan, J. J., Jain, N., Gamblin, T., Bremer, P.,
Schulz, M., and Kale, L. V. (2015). Identifying the culprits behind network conges-
tion. In 2015 IEEE International Parallel and Distributed Processing Symposium,
pages 113–122.

Bohringer, C., Loschel, A., Moslener, U., and Rutherford, T. F. (2009). Eu cli-
mate policy up to 2020: An economic impact assessment. Energy Economics, 31,
Supplement 2:S295 – S305.

Borghesi, A., Bartolini, A., Milano, M., and Benini, L. (2019). Pricing schemes for
energy-efficient hpc systems: Design and exploration. The International Journal
of High Performance Computing Applications, 33(4):716–734.

Brandt, J. M., Froese, E., Gentile, A. C., Kaplan, L., Allan, B. A., and Walsh, E. J.
(2016). Network performance counter monitoring and analysis on the cray xc
platform. https://www.osti.gov/biblio/1422085.

Budiardja, R., Crosby, L., and You, H. (2013). Effect of rank placement on Cray
XC30 communication cost. https://cug.org/proceedings/cug2013_proceedings/
includes/files/pap153.pdf.

https://www.osti.gov/biblio/1422085
https://cug.org/proceedings/cug2013_proceedings/includes/files/pap153.pdf
https://cug.org/proceedings/cug2013_proceedings/includes/files/pap153.pdf

151

Chakaravarthy, V. T., Kedia, M., Sabharwal, Y., Kumar Katta, N. P., Rajamony,
R., and Ramanan, A. (2012). Mapping strategies for the PERCS architecture.
International Conf. on High Performance Computing (HiPC).

Chapman, B. et al. (2018). Rabbitmq. https://github.com/rabbitmq.

Chen, H., Caramanis, M. C., and Coskun, A. K. (2014). The data center as a
grid load stabilizer. Proceedings of the Asia and South Pacific Design Automation
Conference, ASP-DAC, (i):105–112.

Chen, H., Hankendi, C., Caramanis, M. C., and Coskun, A. K. (2013). Dynamic
server power capping for enabling data center participation in power markets. In
Intl. Conf. on Computer-Aided Design (ICCAD).

Chen, H., Zhang, Y., Caramanis, M. C., and Coskun, A. K. (2019). Energyqare: Qos-
aware data center participation in smart grid regulation service reserve provision.
ACM Trans. Model. Perform. Eval. Comput. Syst., 4(1):2:1–2:31.

Chen, Z., Wu, L., and Li, Z. (2014). Electric demand response management for
distributed large-scale internet data centers. IEEE Transactions on Smart Grid,
5(2):651–661.

Christian, B. (2011). Benchmarking Modern Multiprocessors. PhD thesis, Princeton
University.

Chunduri, S., Groves, T., Mendygral, P., Austin, B., Balma, J., Kandalla, K., Ku-
maran, K., Lockwood, G., Parker, S., Warren, S., Wichmann, N., and Wright, N.
(2019). GPCNeT: Designing a benchmark suite for inducing and measuring con-
tention in hpc networks. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’19, New York,
NY, USA. Association for Computing Machinery.

Chunduri, S., Harms, K., Parker, S., Morozov, V., Oshin, S., Cherukuri, N., and
Kumaran, K. (2017). Run-to-run variability on xeon phi based cray xc systems.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’17, pages 52:1–52:13, New York, NY, USA.
ACM.

Cioara, T., Anghel, I., Bertoncini, M., Salomie, I., Arnone, D., Mammina, M., Ve-
livassaki, T., and Antal, M. (2018). Optimized flexibility management enacting
data centres participation in smart demand response programs. Future Generation
Computer Systems, 78:330 – 342.

Clausen, A., Koenig, G., Klingert, S., Ghatikar, G., Schwartz, P. M., and Bates,
N. (2019). An analysis of contracts and relationships between supercomputing

https://github.com/rabbitmq

152

centers and electricity service providers. In Proceedings of the 48th International
Conference on Parallel Processing: Workshops, ICPP 2019, pages 4:1–4:8, New
York, NY, USA. ACM.

Cray Inc. (2018). Aries hardware counters (4.0). http://pubs.cray.com/content/
S-0045/4.0/aries-hardware-counters.

Cray Inc. (2020). Cray performance measurement and analysis tools user guide
(7.0.0). https://pubs.cray.com/content/S-2376/7.0.0/cray-performance-
measurement-and-analysis-tools-user-guide/craypat.

Cupelli, L., Schütz, T., Jahangiri, P., Fuchs, M., Monti, A., and Müller, D. (2018).
Data center control strategy for participation in demand response programs. IEEE
Transactions on Industrial Informatics, 14(11):5087–5099.

David, H., Gorbatov, E., Hanebutte, U. R., Khanna, R., and Le, C. (2010). Rapl:
Memory power estimation and capping. ACM/IEEE International Symposium on
Low-Power Electronics and Design (ISLPED), pages 189–194.

Dhiman, G., Marchetti, G., and Rosing, T. (2009). vGreen: a system for energy ef-
ficient computing in virtualized environments. In ACM/IEEE International Sym-
posium on Low-Power Electronics and Design (ISLPED), pages 243–248. ACM.

Dongarra, J., Heroux, M. A., and Luszczek, P. (2016). A new metric for ranking
high-performance computing systems. National Science Review, 3(1):30–35.

EIA (2014). Annual energy outlook 2014. http://www.eia.gov/forecasts/aeo.

Faanes, G., Bataineh, A., Roweth, D., Court, T., Froese, E., Alverson, B., Johnson,
T., Kopnick, J., Higgins, M., and Reinhard, J. (2012). Cray cascade: A scalable
hpc system based on a dragonfly network. In SC ’12: Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage and
Analysis, pages 1–9.

Faizian, P., Rahman, S., Mollah, A., Yuan, X., Pakin, S., and Lang, M. (2016).
Traffic pattern-based adaptive routing for intra-group communication in dragonfly
networks. IEEE Annual Symposium on High-Performance Interconnects (HOTI).

Feitelson, D. G., Tsafrir, D., and Krakov, D. (2014). Experience with using the Paral-
lel Workloads Archive. Journal of Parallel and Distributed Computing, 74(10):2967–
2982.

Fuentes, P., Vallejo, E., Camarero, C., Beivide, R., and Valero, M. (2016). Network
unfairness in dragonfly topologies. Journal of Supercomputing, 72(12):4468–4496.

http://pubs.cray.com/content/S-0045/4.0/aries-hardware-counters
http://pubs.cray.com/content/S-0045/4.0/aries-hardware-counters
https://pubs.cray.com/content/S-2376/7.0.0/cray-performance-measurement-and-analysis-tools-user-guide/craypat
https://pubs.cray.com/content/S-2376/7.0.0/cray-performance-measurement-and-analysis-tools-user-guide/craypat
http://www.eia.gov/forecasts/aeo

153

Gandhi, A., Harchol-Balter, M., and Kozuch, M. A. (2012). Are sleep states effective
in data centers? In 2012 International Green Computing Conference (IGCC),
pages 1–10.

Garcia, M., Vallejo, E., Beivide, R., Odriozola, M., and Valero, M. (2013). Efficient
routing mechanisms for dragonfly networks. Proceedings of the International Conf.
on Parallel Processing, pages 582–592.

Govindan, S., Sivasubramaniam, A., and Urgaonkar, B. (2011). Benefits and limi-
tations of tapping into stored energy for datacenters. In Proceedings of the 38th
International Symposium on Computer Architecture (ISCA), pages 341–352, New
York, NY, USA. ACM.

Groves, T., Grant, R. E., Hemmer, S., Hammond, S., Levenhagen, M., and Arnold,
D. C. (2016). (sai) stalled, active and idle: Characterizing power and performance
of large-scale dragonfly networks. In 2016 IEEE International Conference on
Cluster Computing (CLUSTER), pages 50–59.

Groves, T., Gu, Y., and Wright, N. J. (2017). Understanding performance variability
on the aries dragonfly network. In 2017 IEEE International Conference on Cluster
Computing (CLUSTER), pages 809–813.

Hansen, J., Knudsen, J., and Annaswamy, A. M. (2014). Demand response in smart
grids: Participants, challenges, and a taxonomy. In 53rd IEEE Conference on
Decision and Control, pages 4045–4052.

Hastings, E., Rincon-Cruz, D., Spehlmann, M., Meyers, S., Xu, A., Bunde, D. P., and
Leung, V. J. (2015). Comparing global link arrangements for dragonfly networks.
In 2015 IEEE International Conference on Cluster Computing, pages 361–370.

Heitmann, K., Finkel, H., Pope, A., Morozov, V., et al. (2019). The outer rim
simulation: A path to many-core supercomputers. The Astrophysical Journal
Supplement Series, 245(1):16.

Heroux, M. A. et al. (2009). Improving performance via mini-applications. https:
//www.osti.gov/biblio/993908.

Hertel, E. S., Bell, R. L., Elrick, M. G., Farnsworth, A. V., Kerley, G. I., McGlaun,
J. M., Petney, S. V., Silling, S. A., Taylor, P. A., and Yarrington, L. (1995). CTH:
A software family for multi-dimensional shock physics analysis, pages 377–382.
Springer Berlin Heidelberg.

Hsieh, M.-Y., Rodrigues, A., Riesen, R., Thompson, K., and Song, W. (2011). A
framework for architecture-level power, area, and thermal simulation and its appli-
cation to network-on-chip design exploration. ACM SIGMETRICS Performance
Evaluation Review, 38:63.

https://www.osti.gov/biblio/993908
https://www.osti.gov/biblio/993908

154

Jain, N., Bhatele, A., Ni, X., Wright, N. J., and Kale, L. V. (2014). Maximizing
throughput on a dragonfly network. In SC ’14: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
pages 336–347.

Jain, N., Bhatele, A., Robson, M. P., Gamblin, T., and Kale, L. V. (2013). Predict-
ing application performance using supervised learning on communication features.
In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’13, pages 95:1–95:12, New York, NY, USA.
ACM.

Jain, N., Bhatele, A., White, S., Gamblin, T., and Kale, L. V. (2016). Evaluating
hpc networks via simulation of parallel workloads. In SC ’16: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 154–165.

Jha, S., Brandt, J., Gentile, A., Kalbarczyk, Z., and Iyer, R. (2018). Character-
izing supercomputer traffic networks through link-level analysis. In 2018 IEEE
International Conference on Cluster Computing (CLUSTER), pages 562–570.

Jha, S., Patke, A., Brandt, J., Gentile, A., Lim, B., Showerman, M., Bauer, G.,
Kaplan, L., Kalbarczyk, Z., Kramer, W., and Iyer, R. (2020). Measuring conges-
tion in high-performance datacenter interconnects. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20), pages 37–57, Santa
Clara, CA. USENIX Association.

Jiang, N., Kim, J., and Dally, W. J. (2009). Indirect adaptive routing on large scale
interconnection networks. ACM SIGARCH Computer Architecture News, 37:220.

Jokanovic, A., Sancho, J. C., Rodriguez, G., Lucero, A., Minkenberg, C., and Labarta,
J. (2015). Quiet neighborhoods: key to protect job performance predictability.
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
449–459.

Kambadur, M., Moseley, T., Hank, R., and Kim, M. A. (2012). Measuring in-
terference between live datacenter applications. In SC ’12: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, pages 1–12.

Kaplan, F., Tuncer, O., Leung, V. J., Hemmert, S. K., and Coskun, A. K. (2017).
Unveiling the Interplay between Global Link Arrangements and Network Manage-
ment Algorithms on Dragonfly Networks. IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID), pages 325–334.

155

Kim, J., Baczewski, A. D., Beaudet, T. D., Benali, A., et al. (2018). QMC-
PACK: an open sourceab initioquantum monte carlo package for the electronic
structure of atoms, molecules and solids. Journal of Physics: Condensed Matter,
30(19):195901.

Kim, J., Dally, W. J., Scott, S., and Abts, D. (2008). Technology-driven, highly-
scalable dragonfly topology. International Symposium on Computer Architecture
(ISCA), pages 77–88.

Kim, J. et al. (2014). QMCPACK sample input. https://github.com/QMCPACK/
qmcpack/blob/develop/examples/molecules/H2O/simple-H2O.xml.

Klawonn, A., Lanser, M., Rheinbach, O., Wellein, G., and Wittmann, M. (2020).
Energy efficiency of nonlinear domain decomposition methods. The International
Journal of High Performance Computing Applications.

Laurie, D. et al. (2018). An open-source tool for controlling ipmi-enabled systems.
https://github.com/ipmitool/ipmitool.

Le, T. N., Liu, Z., Chen, Y., and Bash, C. (2016a). Joint capacity planning and op-
erational management for sustainable data centers and demand response. In Pro-
ceedings of the 7th International Conference on Future Energy Systems, e-Energy
’16, pages 16:1–16:12.

Le, T. N., Liu, Z., Chen, Y., and Bash, C. (2016b). Joint capacity planning and
operational management for sustainable data centers and demand response. In
Proceedings of the Seventh International Conference on Future Energy Systems,
e-Energy ’16, pages 16:1–16:12, New York, NY, USA. ACM.

Leung, V. J., Arkin, E. M., Bender, M. A., Bunde, D., Johnston, J., Lal, A., Mitchell,
J. S. B., Phillips, C., and Seiden, S. S. (2002). Processor allocation on Cplant:
Achieving general processor locality using one-dimensional allocation strategies.
IEEE International Conf. on Cluster Computing, (CLUSTER), pages 296–304.

Li, S., Brocanelli, M., Zhang, W., and Wang, X. (2014). Integrated power man-
agement of data centers and electric vehicles for energy and regulation market
participation. IEEE Transactions on Smart Grid, 5(5):2283–2294.

Liu, Z., Liu, I., Low, S., and Wierman, A. (2014). Pricing data center demand re-
sponse. In The 2014 ACM International Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’14, page 111–123. Association for Comput-
ing Machinery.

Maiterth, M., Koenig, G., Pedretti, K., Jana, S., Bates, N., Borghesi, A., Montoya,
D., Bartolini, A., and Puzovic, M. (2018). Energy and power aware job scheduling

https://github.com/QMCPACK/qmcpack/blob/develop/examples/molecules/H2O/simple-H2O.xml
https://github.com/QMCPACK/qmcpack/blob/develop/examples/molecules/H2O/simple-H2O.xml
https://github.com/ipmitool/ipmitool

156

and resource management: Global survey — initial analysis. In 2018 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 685–693.

Melo, D. and Carvalho, A. (2010). The new linux perf tools. In Slides from Linux
Kongress, volume 18.

Mubarak, M., Carothers, C. D., Ross, R., and Carns, P. (2012). Modeling a
million-node dragonfly network using massively parallel discrete-event simulation.
SC Companion: High Performance Computing, Networking Storage and Analysis
(SCC), pages 366–376.

Murphy, R. C., Wheeler, K. B., Barrett, B. W., and Ang, J. A. (2010). Introducing
the graph 500. In Cray Users Group (CUG), volume 19, pages 45–74.

National Energy Research Scientific Computing Center (NERSC) (2020). NERSC
Queue Policy. https://docs.nersc.gov/jobs/policy/.

New York Independent System Operator (NYISO) (2020). Ancillary services manual,
v6.0. https://www.nyiso.com/manuals-tech-bulletins-user-guides.

Niu, L. and Guo, Y. (2016). Enabling reliable data center demand response via
aggregation. In Proceedings of the Seventh International Conference on Future
Energy Systems, e-Energy ’16, pages 22:1–22:11, New York, NY, USA. ACM.

Novoa, C. and Jin, T. (2011). Reliability centered planning for distributed generation
considering wind power volatility. Electric Power Systems Research, 81(8):1654 –
1661.

Pahlevan, A., Zapater, M., Coskun, A., and Atienza, D. (2020). Ecogreen: Elec-
tricity cost optimization for green datacenters in emerging power markets. IEEE
Transactions on Sustainable Computing, pages 1–1.

Parekh, A. K. and Gallager, R. G. (1993). A generalized processor sharing approach
to flow control in integrated services networks: The single-node case. IEEE/ACM
Transactions on Networking, 1(3):344–357.

Paschalidis, I. C. (1999). Class-specific quality of service guarantees in multimedia
communication networks. Automatica, 35(12):1951 – 1968.

Paschalidis, I. C., Li, B., and Caramanis, M. C. (2012). Demand-side management
for regulation service provisioning through internal pricing. IEEE Transactions on
Power Systems, 27(3):1531–1539.

https://docs.nersc.gov/jobs/policy/
https://www.nyiso.com/manuals-tech-bulletins-user-guides

157

Patel, T., Wagenhäuser, A., Eibel, C., Hönig, T., Zeiser, T., and Tiwari, D. (2020).
What does power consumption behavior of hpc jobs reveal? : Demystifying, quan-
tifying, and predicting power consumption characteristics. In 2020 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), pages 799–809.

Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics.
Journal of computational physics, 117(1):1–19.

Prisacari, B., Garcia, M., Vallejo, E., and Beivide, R. (2014a). Performance implica-
tions of remote-only load balancing under adversarial traffic in Dragonflies. Inter-
national Workshop on Interconnection Network Architecture: On-Chip, Multi-Chip.

Prisacari, B., Rodriguez, G., Heidelberger, P., Chen, D., Minkenberg, C., and Hoefler,
T. (2014b). Efficient task placement and routing in dragonfly networks. ACM
International Symposium on High-Performance Parallel and Distributed Computing
(HPDC), pages 129–140.

Prisacari, B., Rodriguez, G., Minkenberg, C., Garcia, M., Vallejo, E., and Beivide,
R. (2016). Performance optimization of load imbalanced workloads in large scale
dragonfly systems. IEEE International Conf. on High Performance Switching and
Routing (HPSR).

Reda, S., Cochran, R., and Coskun, A. K. (2012). Adaptive power capping for servers
with multithreaded workloads. IEEE Micro, 32(5):64–75.

Rodrigues, A. F., CooperBalls, E., Jacob, B., Hemmert, K. S., Barrett, B. W., Kersey,
C., Oldfield, R., Weston, M., Risen, R., Cook, J., and Rosenfeld, P. (2011). The
structural simulation toolkit. ACM SIGMETRICS Performance Evaluation Re-
view, 38(4):37.

Sandia Corporation (2014). LAMMPS sample input. https://github.com/lammps/
lammps/blob/master/examples/DIFFUSE/in.vacf.2d.

Sandia National Laboratories (2020). Structural Simulation Toolkit (SST). https:
//github.com/sstsimulator/sst-elements.

Shehabi, A., Smith, S., Horner, N., Azevedo, I., Brown, R., Koomey, J., Masanet, E.,
Sartor, D., Herrlin, M., and Lintner, W. (2016). United states data center energy
usage report. https://www.osti.gov/biblio/1372902.

Shi, Y., Xu, B., Zhang, B., and Wang, D. (2016). Leveraging energy storage to
optimize data center electricity cost in emerging power markets. In Proceedings
of the Seventh International Conference on Future Energy Systems, e-Energy ’16,
pages 18:1–18:13, New York, NY, USA. ACM.

https://github.com/lammps/lammps/blob/master/examples/DIFFUSE/in.vacf.2d
https://github.com/lammps/lammps/blob/master/examples/DIFFUSE/in.vacf.2d
https://github.com/sstsimulator/sst-elements
https://github.com/sstsimulator/sst-elements
https://www.osti.gov/biblio/1372902

158

Slurm (2016). Slurm’s job allocation policy for dragonfly network. https://github.
com/SchedMD/slurm/blob/master/src/plugins/select/linear/select_linear.
c. [Line 1634-1932; accessed 30-March-2017].

Smith, S., Lowenthal, D., Bhatele, A., Thiagarajan, J., Bremer, P., and Livnat, Y.
(2016). Analyzing inter-job contention in dragonfly networks. https://www2.cs.
arizona.edu/~smiths949/dragonfly.pdf.

Sreepathi, S., D’Azevedo, E., Philip, B., and Worley, P. (2016). Communication
Characterization and Optimization of Applications Using Topology-Aware Task
Mapping on Large Supercomputers. ACM/SPEC International Conf. on Perfor-
mance Engineering (ICPE), pages 225–236.

Sun, Q., Ren, S., Wu, C., and Li, Z. (2016). An online incentive mechanism for emer-
gency demand response in geo-distributed colocation data centers. In Proceedings
of the Seventh International Conference on Future Energy Systems, e-Energy ’16,
pages 3:1–3:13, New York, NY, USA. ACM.

TOP500 (2020). The top 500 list. https://www.top500.org/top500/lists/2020/
11/.

Tran, N. H., Pham, C., Ren, S., Han, Z., and Hong, C. S. (2016). Coordinated power
reduction in multi-tenant colocation datacenter: An emergency demand response
study. In 2016 IEEE International Conference on Communications (ICC), pages
1–6.

Tuncer, O., Zhang, Y., Leung, V. J., and Coskun, A. K. (2017). Task Mapping on
a Dragonfly Supercomputer. IEEE High Performance Extreme Computing Conf.
(HPEC).

Underwood, K. D., Levenhagen, M., and Rodrigues, A. (2007). Simulating red
storm: Challenges and successes in building a system simulation. In 2007 IEEE
International Parallel and Distributed Processing Symposium, pages 1–10.

Wang, W., Abdolrashidi, A., Yu, N., and Wong, D. (2019a). Frequency regulation
service provision in data center with computational flexibility. Applied Energy,
251:113304.

Wang, Y., Zhang, F., Chi, C., Ren, S., Liu, F., Wang, R., and Liu, Z. (2019b). A
market-oriented incentive mechanism for emergency demand response in colocation
data centers. Sustainable Computing: Informatics and Systems, 22:13 – 25.

Wilke, J., Bennett, J., Kolla, H., Teranishi, K., Slattengren, N., and Floren, J. (2014).
Extreme-Scale viability of collective communication for resilient task scheduling
and work stealing. IEEE/IFIP International Conf. on Dependable Systems and
Networks (DSN), pages 756–761.

https://github.com/SchedMD/slurm/blob/master/src/plugins/select/linear/select_linear.c
https://github.com/SchedMD/slurm/blob/master/src/plugins/select/linear/select_linear.c
https://github.com/SchedMD/slurm/blob/master/src/plugins/select/linear/select_linear.c
https://www2.cs.arizona.edu/~smiths949/dragonfly.pdf
https://www2.cs.arizona.edu/~smiths949/dragonfly.pdf
https://www.top500.org/top500/lists/2020/11/
https://www.top500.org/top500/lists/2020/11/

159

Yang, X., Jenkins, J., Mubarak, M., Ross, R. B., and Lan, Z. (2016). Watch out for
the bully! job interference study on dragonfly network. In SC ’16: Proceedings of
the International Conference for High Performance Computing, Networking, Stor-
age and Analysis, pages 750–760.

Yu, Z., Guo, Y., and Pan, M. (2017). Coalitional datacenter energy cost optimization
in electricity markets. In Proceedings of the Eighth International Conference on
Future Energy Systems, e-Energy ’17, pages 191–202, New York, NY, USA. ACM.

Zhang, L., Ren, S., Wu, C., and Li, Z. (2015). A truthful incentive mechanism for
emergency demand response in colocation data centers. In 2015 IEEE Conference
on Computer Communications (INFOCOM), pages 2632–2640.

Zhou, Z., Liu, F., Chen, S., and Li, Z. (2020). A truthful and efficient incentive
mechanism for demand response in green datacenters. IEEE Transactions on
Parallel and Distributed Systems, 31(1):1–15.

CURRICULUM VITAE

161

162

163

