Measuring forest structure and biomass using Echidna® ground-based lidar
Embargo Date
Indefinite
OA Version
Citation
Abstract
Forest canopy structural parameters and above-ground biomass, retrieved by a ground-based, upward-scanning, near-infrared (1064 nm), full-waveform lidar, the Echidna® Validation Instrument (EVI), matched ground measurements with R2 values of 0.92 to 0.99 at six hardwood and conifer forest sites within New England in 2007 and at eight conifer forest sites in the Sierra National Forest in California in 2008. Retrieved parameters included mean diameter at breast height (DBH), stem count density, basal area, and above-ground biomass, based on five scans within each 1-ha plot. Canopy heights derived from the EVI-retrieved foliage profile closely matched those derived from the airborne Laser Vegetation Imaging Sensor (LVIS).
Topographic slope can induce errors in parameter retrievals because the horizontal plane of the instrument scan, which is used to identifY, measure, and count tree trunks, will intersect trunks below breast height in the uphill direction and above breast height in the downhill direction. I tested three methods of slope correction on the Sierra sites. Without correction, single-scan correlations of structural parameters with field measurements ranged from 0.53-0.86; after correction, from 0.78-0.91, 0.80-0.93 and 0.85-0.93 for the three methods respectively. These results document the importance of the slope correction in EVI structural retrievals.
Three sites scanned in 2007 provided the opportunity to detect change in comparison to 2009 or 2010 scans. At a shelterwood conifer site at Howland Experimental Forest, mean DBH, above-ground biomass, and leaf area index (LAI) all increased between 2007 and 2009. An ice storm struck the Harvard Forest in December, 2008, providing the opportunity to detect damage between 2007 and 2009 or 2010 EVI scans at two sites there: hemlock and hardwood. Retrieved leaf area index (LAI) was 13 percent lower in the hemlock site in 2009 and 10 percent lower in the hardwood site in 2010. Broken tops were visible in the 2010 data. Stem density decreased and mean DBH increased at both sites, as small and weak trees were felled by the ice.
Description
Thesis (Ph.D.)--Boston University
PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.