Influence of macrophage NF-kappaB activation on pneumococcal pneumonia

Date
2016
DOI
Authors
Coleman, Fadie Thomas
Version
OA Version
Citation
Abstract
Streptococcus pneumoniae (pneumococcus) is commonly found in the nasopharynx of healthy individuals, yet it can be a serious pathogen, particularly in the lower respiratory tract, where it can cause severe pneumonia. During pneumococcal pneumonia, anti-bacterial host defense requires the orchestrated expression of innate immunity mediators, initiated by alveolar macrophages and dependent on transcriptional activity driven by Nuclear Factor-𝜅B (NF-𝜅B). Although the initiation of a pulmonary inflammatory response is critical to anti-pneumococcal defense during pneumonia, how differences in pneumococcal-macrophage interactions can influence this process is unclear. To determine the functional significance of varying macrophage NF-𝜅B activation, we examined macrophage responses to pneumococcal stimulation in culture and in mice. Macrophage-pneumococcal interactions resulted in the induction of varied NF-𝜅B activation. Two main pathways were revealed regarding host response and disease outcome. Pneumococci that induced efficient macrophage NF-𝜅B activation resulted in robust anti-pneumococcal lung defense and bacterial clearance. Conversely, failure to activate effective macrophage NF-𝜅B signaling resulted in an altered macrophage response of necroptosis. Overall, we conclude that varying levels of macrophage NF-𝜅B activation by pneumococcus can directly influence the severity of infection. Furthermore, inefficient macrophage NF-𝜅B activation can also have cytotoxic effects on these critical lung resident cells during pneumonia. The induction of macrophage NF-𝜅B activation by S. pneumoniae is as diverse as the population of pneumococcal isolates in the community. A unique host-pathogen interaction exists between pneumococcus and the alveolar macrophage that plays an important role in anti-pneumococcal defense during pneumonia and in the prevention of cytotoxic consequences induced by virulent pneumococci. This interaction suggests that therapies, which modulate NF-𝜅B activation, hold promise for augmenting resistance and ameliorating deleterious effects during pneumococcal pneumonia that could lead to the development of severe disease.
Description
License