Evaluation and extension of a kernel-based method for gene-gene interaction tests of common variants

Date
2016
DOI
Authors
Xue, Luting
Version
OA Version
Citation
Abstract
Interaction is likely to play a significant role in complex diseases, and various methods are available for identifying interactions between variants in genome-wide association studies (GWAS). Kernel-based variance component methods such as SKAT are flexible and computationally efficient methods for identifying marginal associations. A kernel-based variance component method, called the Gene-centric Gene-Gene Interaction with Smoothing-sPline ANOVA model (SPA3G) was proposed to identify gene-gene interactions for a quantitative trait. For interaction testing, the SPA3G method performs better than some SNP-based approaches under many scenarios. In this thesis, we evaluate the properties of the SPA3G method and extend SPA3G using alternative p-value approximations and interaction kernels. This thesis focuses on common variants only. Our simulation results show that the allele matching interaction kernel, combined with the method of moments p-value approximation, leads to inflated type I error in small samples. For small samples, we propose a Principal Component (PC)-based interaction kernel and computing p-values with a 3-moment adjustment that yield more appropriate type I error. We also propose a weighted PC kernel that has higher power than competing approaches when interaction effects are sparse. By combining the two proposed kernels, we develop omnibus methods that obtain near-optimal power in most settings. Finally, we illustrate how to analyze the interaction between selected gene pairs on the age at natural menopause (ANM) from the Framingham Heart Study.
Description
License