Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item

    Control and optimization approaches for energy-limited systems: applications to wireless sensor networks and battery-powered vehicles

    Thumbnail
    License
    Attribution 4.0 International
    Date Issued
    2017
    Author(s)
    Pourazarm, Sepideh
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/20849
    Abstract
    This dissertation studies control and optimization approaches to obtain energy-efficient and reliable routing schemes for battery-powered systems in network settings. First, incorporating a non-ideal battery model, the lifetime maximization problem for static wireless sensor networks is investigated. Adopting an optimal control approach, it is shown that there exists a time-invariant optimal routing vector in a fixed topology network. Furthermore, under very mild conditions, this optimal policy is robust with respect to the battery model used. Then, the lifetime maximization problem is investigated for networks with a mobile source node. Redefining the network lifetime, two versions of the problem are studied: when there exist no prior knowledge about the source node’s motion dynamics vs. when source node’s trajectory is known in advance. For both cases, problems are formulated in the optimal control framework. For the former, the solution can be reduced to a sequence of nonlinear programming problems solved on line as the source node trajectory evolves. For the latter, an explicit off-line numerical solution is required. Second, the problem of routing for vehicles with limited energy through a network with inhomogeneous charging nodes is studied. The goal is to minimize the total elapsed time, including traveling and recharging time, for vehicles to reach their destinations. Adopting a game-theoretic approach, the problem is investigated from two different points of view: user-centric vs. system-centric. The former is first formulated as a mixed integer nonlinear programming problem. Then, by exploiting properties of an optimal solution, it is reduced to a lower dimensionality problem. For the latter, grouping vehicles into subflows and including the traffic congestion effects, a system-wide optimization problem is defined. Both problems are studied in a dynamic programming framework as well. Finally, the thesis quantifies the Price Of Anarchy (POA) in transportation net- works using actual traffic data. The goal is to compare the network performance under user-optimal vs. system-optimal policies. First, user equilibria flows and origin- destination demands are estimated for the Eastern Massachusetts transportation net- work using speed and capacity datasets. Then, obtaining socially-optimal flows by solving a system-centric problem, the POA is estimated.
    Rights
    Attribution 4.0 International
    Collections
    • Boston University Theses & Dissertations [6950]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help