Show simple item record

dc.contributor.authorZhang, Jianmingen_US
dc.contributor.authorSclaroff, Stanen_US
dc.date.accessioned2018-02-08T13:20:53Z
dc.date.available2018-02-08T13:20:53Z
dc.date.issued2016-05-01
dc.identifier.citationJianming Zhang, Stan Sclaroff. 2016. "Exploiting Surroundedness for Saliency Detection: A Boolean Map Approach." IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 38, Issue 5, pp. 889 - 902.
dc.identifier.issn0162-8828
dc.identifier.issn2160-9292
dc.identifier.urihttps://hdl.handle.net/2144/26915
dc.description.abstractWe demonstrate the usefulness of surroundedness for eye fixation prediction by proposing a Boolean Map based Saliency model (BMS). In our formulation, an image is characterized by a set of binary images, which are generated by randomly thresholding the image's feature maps in a whitened feature space. Based on a Gestalt principle of figure-ground segregation, BMS computes a saliency map by discovering surrounded regions via topological analysis of Boolean maps. Furthermore, we draw a connection between BMS and the Minimum Barrier Distance to provide insight into why and how BMS can properly captures the surroundedness cue via Boolean maps. The strength of BMS is verified by its simplicity, efficiency and superior performance compared with 10 state-of-the-art methods on seven eye tracking benchmark datasets.en_US
dc.description.sponsorshipUS National Science Foundation; 1059218; 1029430en_US
dc.description.urihttp://cs-people.bu.edu/jmzhang/BMS/BMS_iccv13_preprint.pdf
dc.format.extent889 - 902en_US
dc.relation.ispartofIEEE Transactions on Pattern Analysis and Machine Intelligence
dc.subjectArtificial intelligence and image processingen_US
dc.subjectInformation systemsen_US
dc.subjectElectrical and electronic engineeringen_US
dc.titleExploiting surroundedness for saliency detection: a boolean map approachen_US
dc.typeArticleen_US
dc.description.versionAccepted manuscripten_US
dc.identifier.doi10.1109/TPAMI.2015.2473844
pubs.elements-sourcecrossrefen_US
pubs.notesEmbargo: No embargoen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Arts & Sciencesen_US
pubs.organisational-groupBoston University, College of Arts & Sciences, Department of Computer Scienceen_US
pubs.publication-statusPublisheden_US
dc.identifier.orcid0000-0002-0711-4313 (Sclaroff, Stan)


This item appears in the following Collection(s)

Show simple item record