Exploiting the Pathway Structure of Metabolism to Reveal High-Order Epistasis

Date
2008-4-30
Authors
Imielinski, Marcin
Belta, Calin
Version
OA Version
Citation
Imielinski, Marcin, Calin Belta. "Exploiting the pathway structure of metabolism to reveal high-order epistasis" BMC Systems Biology 2:40. (2008)
Abstract
BACKGROUND. Biological robustness results from redundant pathways that achieve an essential objective, e.g. the production of biomass. As a consequence, the biological roles of many genes can only be revealed through multiple knockouts that identify a set of genes as essential for a given function. The identification of such "epistatic" essential relationships between network components is critical for the understanding and eventual manipulation of robust systems-level phenotypes. RESULTS. We introduce and apply a network-based approach for genome-scale metabolic knockout design. We apply this method to uncover over 11,000 minimal knockouts for biomass production in an in silico genome-scale model of E. coli. A large majority of these "essential sets" contain 5 or more reactions, and thus represent complex epistatic relationships between components of the E. coli metabolic network. CONCLUSION. The complex minimal biomass knockouts discovered with our approach illuminate robust essential systems-level roles for reactions in the E. coli metabolic network. Unlike previous approaches, our method yields results regarding high-order epistatic relationships and is applicable at the genome-scale.
Description
License
Copyright 2008 Imielinski and Belta; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.