Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • College of Engineering
    • Biomedical Engineering
    • ENG: Biomedical Engineering: Scholarly Papers
    • View Item
    •   OpenBU
    • College of Engineering
    • Biomedical Engineering
    • ENG: Biomedical Engineering: Scholarly Papers
    • View Item

    Design automation of microfluidic droplet sorting platforms

    Thumbnail
    Date Issued
    2019-07
    Author(s)
    McIntyre, David
    Densmore, Douglas
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/36719
    Citation (published version)
    D. McIntyre, D. Densmore. (2019). Design Automation of Microfluidic Droplet Sorting Platforms. In The Proceedings of the 11th International Workshop on Bio-Design Automation (IWBDA-19).
    Abstract
    Both basic research and biological design require high throughput screening to parse through the massive amounts of variants generated in experiments. However, the cost and expertise needed for use of such technology limit accessibility. Simple and reproducible designs of a sorting platform would reduce the barrier for implementation of affordable bench-top screening platforms. Droplet microfluidics present a promising approach for automating biology, reducing reaction volumes to picoliter droplets and allowing for deterministic manipulation of samples. Droplet microfluidics have been used extensively for high throughput screening and directed evolution, yet limitations in fabrication have prevented the characterization needed for a design tool and subsequent widespread adoption. Here, we present a finite element analysis (FEA) model-based design framework for dielectrophoretic droplet microfluidic sorters and its preliminary experimental validation. This framework extends previous work from our group creating microfluidic designs tools, increasing their usability in the lab.
    Collections
    • BU Open Access Articles [4755]
    • ENG: Biomedical Engineering: Scholarly Papers [294]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help