Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item

    Approaches for identifying lung cell type responses to perturbation

    Thumbnail
    Date Issued
    2019
    Author(s)
    Corbett, Sean
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Embargoed until:
    2021-07-31
    Permanent Link
    https://hdl.handle.net/2144/37093
    Abstract
    The use of genomic profiling can provide indications of underlying molecular responses to chemical perturbation, and the characterization of these responses can provide an increased understanding of the greater physiological effects of an exposure and inform clinical decision making. This approach has proven to be effective in understanding the effects of environmental exposures such as cigarette smoke on the airway epithelium, and how they may contribute to associated disease pathogenesis. Because of the existing body of work in genomic profiling towards understanding the effects of environmental exposures, it has relevant applications towards the study of the effects of emerging exposures such as electronic cigarettes, which remain poorly understood. Further, current approaches for genomic profiling could be improved through the development of data resources and computational methods which can identify not only tissue- or sample-level molecular responses to perturbation, but also responses specific to individual cells or cell types. In light of these issues, I investigated the molecular response in airway epithelium to a novel inhaled exposure, and developed methods to support more detailed characterization of such effects. In this dissertation, I describe a clinical observational study in which I examined the gene expression effects of electronic cigarettes on the airway epithelium, and compare these effects to those of conventional cigarettes (Aim 1). Next, I describe CELDA, a novel computational method for identifying cell subpopulations and the co-expressed modules of genes that identify them in single cell RNA-seq (scRNA-seq) data (Aim 2). Finally, I describe the Lung Connectivity Map (Lung CMap), a platform for interrogating lung cell type specific responses to a large set of chemical and molecular perturbations (Aim 3). Collectively, this work encompasses both observational and computational approaches for detailed characterization of the molecular responses to perturbation, and the determination of the relative effects of these novel perturbations versus their more well-described counterparts.
    Collections
    • Boston University Theses & Dissertations [5927]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help