Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Dissertations and Theses (1964-2011)
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Dissertations and Theses (1964-2011)
    • View Item

    Study of Gaussian processes, Lévy processes and infinitely divisible distributions

    Thumbnail
    Date Issued
    2011
    Author(s)
    Veillette, Mark S.
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Embargoed until:
    Indefinite
    Permanent Link
    https://hdl.handle.net/2144/38109
    Abstract
    In this thesis, we study distribution functions and distributional-related quantities for various stochastic processes and probability distributions, including Gaussian processes, inverse Levy subordinators, Poisson stochastic integrals, non-negative infinitely divisible distributions and the Rosenblatt distribution. We obtain analytical results for each case, and in instances where no closed form exists for the distribution, we provide numerical solutions. We mainly use two methods to analyze such distributions. In some cases, we characterize distribution functions by viewing them as solutions to differential equations. These are used to obtain moments and distributions functions of the underlying random variables. In other cases, we obtain results using inversion of Laplace or Fourier transforms. These methods include the Post-Widder inversion formula for Laplace transforms, and Edgeworth approximations. In Chapter 1, we consider differential equations related to Gaussian processes. It is well known that the heat equation together with appropriate initial conditions characterize the marginal distribution of Brownian motion. We generalize this connection to finite dimensional distributions of arbitrary Gaussian processes. In Chapter 2, we study the inverses of Levy subordinators. These processes are non-Markovian and their finite-dimensional distributions are not known in closed form. We derive a differential equation related to these processes and use it to find an expression for joint moments. We compute numerically these joint moments in Chapter 3 and include several examples. Chapter 4 considers Poisson stochastic integrals. We show that the distribution function of these random variables satisfies a Kolmogorov-Feller equation, and we describe the regularity of solutions and numerically solve this equation. Chapter 5 presents a technique for computing the density function or distribution function of any non-negative infinitely divisible distribution based on the Post-Widder method. In Chapter 6, we consider a distribution given by an infinite sum of weighted gamma distributions. We derive the Levy-Khintchine representation and show when the tail of this sum is asymptotically normal. We derive a Berry-Essen bound and Edgeworth expansions for its distribution function. Finally, in Chapter 7 we look at the Rosenblatt distribution, which can be expressed as a infinite sum of weighted chi-squared distributions. We apply the expansions in Chapter 6 to compute its distribution function.
    Description
    Thesis (Ph.D.)--Boston University
     
    PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.
     
    Collections
    • Dissertations and Theses (1964-2011) [1536]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help