Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item

    Improved methods for statistical inference in the context of various types of parameter variation

    Thumbnail
    Date Issued
    2019
    Author(s)
    Casini, Alessandro
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/38750
    Abstract
    This dissertation addresses various issues related to statistical inference in the context of parameter time-variation. The problem is considered within general regression models as well as in the context of methods for forecast evaluation. The first chapter develops a theory of evolutionary spectra for heteroskedasticityand autocorrelation-robust (HAR) inference when the data may not satisfy secondorder stationarity. We introduce a class of nonstationary stochastic processes that have a time-varying spectral representation and presents a new positive semidefinite heteroskedasticity- and autocorrelation consistent (HAC) estimator. We obtain an optimal HAC estimator under the mean-squared error (MSE) criterion and show its consistency. We propose a data-dependent procedure based on a “plug-in” approach that determines the bandwidth parameters for given kernels and a given sample size. The second chapter develops a continuous record asymptotic framework to build inference methods for the date of a structural change in a linear regression model. We impose very mild regularity conditions on an underlying continuous-time model assumed to generate the data. We consider the least-squares estimate of the break date and establish consistency and convergence rate. We provide a limit theory for shrinking magnitudes of shifts and locally increasing variances. The third chapter develops a novel continuous-time asymptotic framework for inference on whether the predictive ability of a given forecast model remains stable over time. As the sampling interval between observations shrinks to zero the sequence of forecast losses is approximated by a continuous-time stochastic process possessing certain pathwise properties. We consider an hypotheses testing problem based on the local properties of the continuous-time limit counterpart of the sequence of losses. The fourth chapter develops a class of Generalized Laplace (GL) inference methods for the change-point dates in a linear time series regression model with multiple structural changes. The GL estimator is defined by an integration rather than optimization-based method and relies on the least-squares criterion function. On the theoretical side, depending on some smoothing parameter, the class of GL estimators exhibits a dual limiting distribution; namely, the classical shrinkage asymptotic distribution of the least-squares estimator, or a Bayes-type asymptotic distribution.
    Collections
    • Boston University Theses & Dissertations [6782]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help