Show simple item record

dc.contributor.advisorDoerrer, Linda H.en_US
dc.contributor.advisorWhitty, Adrianen_US
dc.contributor.authorBrazeau, Sarah Elizabethen_US
dc.date.accessioned2020-04-27T12:58:59Z
dc.date.available2020-04-27T12:58:59Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/2144/40354
dc.description.abstractA CuI fully fluorinated O-donor monodentate alkoxide complex, K[Cu(OC4F9)2] (1), was previously shown to form a trinuclear copper–dioxygen species with a {Cu3(3-O)2} core, TOC4F9, upon reactivity with O2 at low temperature. A significantly expanded kinetic and mechanistic study of TOC4F9 formation is reported using stopped-flow spectroscopy. The TOC4F9 complex performed catalytic oxidase conversion of para-hydroquinone (H2Q) to para-benzoquinone (BQ) and hydroxylation of 2,4-di-tert-butylphenolate (DBP) to catecholate, making TOC4F9 the first tri-copper species to perform tyrosinase (both monooxygenase and oxidase) chemistry. As opposed to 1, when K+ is fully encapsulated in {K(18C6)}[Cu(OC4F9)2] (4), O2 was not reduced under identical conditions. To study the effects of both alkali cation and the degree of encapsulation on reduction of O2, derivative complexes were synthesized with Na+ (16), {Na(DME)}+ (17), {Na(15C5)}+ (18), {K(15C5)}+ (19), {K(15C5)2}+ (20), Cs+ (21), {Cs(18C6)}+ (22), and {Cs(18C6)2}+ (23). Reduction of O2 was found to be encapsulation-dependent, and cation size was also determined to affect the chromophore observed. These results suggest that cation…F/O interactions between the CuI complexes assemble aggregates that are required to form reactive {Cun−O2} species. However, catalytic oxidation of H2Q to BQ and sub-stoichiometric oxidation of DBP to catecholate occurred regardless of whether a {Cun−O2} intermediate was detected, suggesting that a reactive species may self-assemble in the presence of substrate in all complex derivatives unable to reduce O2. A series of heteroleptic mixed phosphine/alkoxide 3d complexes was designed to evaluate PPh3 as a protecting group. Complexes of the form [(Ph3P)2M(OC4F9)2] (M= Fe (24), Co (25), Ni (26), Zn (27)) and [(Ph3P)2M(pinF)] (M= Co (31), Ni (32), Zn (33)) were prepared and characterized, along with related complexes with non-reactive L-donors for comparison, [(DME)Fe(OC4F9)2] (28) and [(Ph3PO)2M(OC4F9)2] (M= Fe (29), Ni (30)). Dimeric [Fe2(-O)(OPPh3)2(OC4F9)4] (36) was isolated after O2 reactivity with 24, and 28 and 29 were able to generate intermediate species capable of both oxidation of H2Q to BQ and oxygen atom transfer of thioanisole to methyl phenyl sulfoxide. The choice of fluorinated ligand influences O2 reactivity with CoII (25, 31), but not for NiII (26, 32). Related dimeric compounds [Co2(pinF)2(THF)4)] (34) and [Zn2(pinF)2(THF)2)] (35) were also isolated.en_US
dc.language.isoen_US
dc.subjectInorganic chemistryen_US
dc.subjectC-H bonden_US
dc.subjectCopperen_US
dc.subjectDioxygenen_US
dc.subjectFluorinated alkoxideen_US
dc.subjectOxidationen_US
dc.subjectPhosphineen_US
dc.title3d metal complexes with the perfluoro-tert-butoxide and perfluoropinacolate ligands: dioxygen reduction and intermolecular substrate oxidationen_US
dc.typeThesis/Dissertationen_US
dc.date.updated2020-04-24T22:10:55Z
etd.degree.nameDoctor of Philosophyen_US
etd.degree.leveldoctoralen_US
etd.degree.disciplineChemistryen_US
etd.degree.grantorBoston Universityen_US
dc.identifier.orcid0000-0002-8009-040X


This item appears in the following Collection(s)

Show simple item record