Show simple item record

dc.contributor.authorLai, Kuan-Wenen_US
dc.contributor.authorLin, Yu-Shenen_US
dc.contributor.authorSchaffler, Lucaen_US
dc.date.accessioned2020-04-28T13:16:41Z
dc.date.available2020-04-28T13:16:41Z
dc.date.issued2020
dc.identifier.citationKuan-Wen Lai, Yu-Shen Lin, Luca Schaffler. 2020. "Decomposition of Lagrangian Classes on K3 Surfaces." preprint, arXiv: 2001.00202, https://arxiv.org/abs/2001.00202
dc.identifier.urihttps://hdl.handle.net/2144/40385
dc.description.abstractWe study the decomposability of a Lagrangian homology class on a K3 surface into a sum of classes represented by special Lagrangian submanifolds, and develop criteria for it in terms of lattice theory. As a result, we prove the decomposability on an arbitrary K3 surface with respect to the Kähler classes in dense subsets of the Kähler cone. Using the same technique, we show that the Kähler classes on a K3 surface which admit a special Lagrangian fibration form a dense subset also. This implies that there are infinitely many special Lagrangian 3-tori in any log Calabi-Yau 3-fold.en_US
dc.description.urihttps://arxiv.org/abs/2001.00202
dc.language.isoen_US
dc.relation.ispartofpreprint, arXiv: 2001.00202
dc.subjectMathematicsen_US
dc.subjectDifferential geometryen_US
dc.subjectAlgebraic geometryen_US
dc.titleDecomposition of Lagrangian classes on K3 surfacesen_US
dc.typeArticleen_US
pubs.elements-sourcemanual-entryen_US
pubs.notesEmbargo: No embargoen_US
pubs.organisational-groupBoston Universityen_US
pubs.organisational-groupBoston University, College of Arts & Sciencesen_US
pubs.organisational-groupBoston University, College of Arts & Sciences, Department of Mathematics & Statisticsen_US
pubs.publication-statusUnpublisheden_US
dc.description.oaversionOther
dc.identifier.mycv518543


This item appears in the following Collection(s)

Show simple item record