Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    High-throughput, volumetric quantitative phase imaging with multiplexed intensity diffraction tomography.

    Thumbnail
    Date Issued
    2019-12-01
    Publisher Version
    10.1364/BOE.10.006432
    Author(s)
    Matlock, Alex
    Tian, Lei
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/40462
    OA Version
    Published version
    Citation (published version)
    Alex Matlock, Lei Tian. 2019. "High-throughput, volumetric quantitative phase imaging with multiplexed intensity diffraction tomography.." Biomed Optics Express, Volume 10, Issue 12, pp. 6432 - 6448. https://doi.org/10.1364/BOE.10.006432
    Abstract
    Intensity diffraction tomography (IDT) provides quantitative, volumetric refractive index reconstructions of unlabeled biological samples from intensity-only measurements. IDT is scanless and easily implemented in standard optical microscopes using an LED array but suffers from large data requirements and slow acquisition speeds. Here, we develop multiplexed IDT (mIDT), a coded illumination framework providing high volume-rate IDT for evaluating dynamic biological samples. mIDT combines illuminations from an LED grid using physical model-based design choices to improve acquisition rates and reduce dataset size with minimal loss to resolution and reconstruction quality. We analyze the optimal design scheme with our mIDT framework in simulation using the reconstruction error compared to conventional IDT and theoretical acquisition speed. With the optimally determined mIDT scheme, we achieve hardware-limited 4Hz acquisition rates enabling 3D refractive index distribution recovery on live Caenorhabditis elegans worms and embryos as well as epithelial buccal cells. Our mIDT architecture provides a 60 × speed improvement over conventional IDT and is robust across different illumination hardware designs, making it an easily adoptable imaging tool for volumetrically quantifying biological samples in their natural state.
    Rights
    © 2019 Optical Society of America. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.
    Collections
    • ENG: Electrical and Computer Engineering: Scholarly Papers [257]
    • BU Open Access Articles [3730]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help