Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item
    •   OpenBU
    • Theses & Dissertations
    • Boston University Theses & Dissertations
    • View Item

    Developing superparamagnetic nanoparticle (SPION) systems with tunable colloidal stability and magnetic properties

    Thumbnail
    Date Issued
    2020
    Author(s)
    Yu, Jin
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/41041
    Abstract
    SPIONs have unique material properties: ultra-small size and high magnetic susceptibility. These properties give SPIONs advantages to be used in a wide range of applications such as NMR/MRI contrast agents, cancer hyperthermia therapy, and cell- targeted and magnetically-triggered intracellular uptake. However, research has found that it is challenging to develop a SPION system that has controllable colloidal stability. This thesis endeavored to develop a SPION surface coating that allowed creation of a SPION system with known surface properties, hence enabling the study of its colloidal stability with a combination of computational and experimental methods. With the knowledge of colloidal behavior of nanoparticles, this thesis further explored the magnetic properties of SPIONs by designing lipid nanoparticles encapsulating (LNPs) that target and isolate a rare type of immune cell.
    Collections
    • Boston University Theses & Dissertations [6905]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help