Boston University Libraries OpenBU
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item
    •   OpenBU
    • BU Open Access Articles
    • BU Open Access Articles
    • View Item

    GymFG: a framework with a gym interface for FlightGear

    Thumbnail
    Date Issued
    2020
    Author(s)
    Chin, Sang
    Wood, Andrew
    Sidney, Ali
    Tarpa, Bishal
    Ross, Ryan
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/43311
    Version
    First author draft
    Citation (published version)
    S. Chin, A. Wood, A. Sidney, B. Tarpa, R. Ross. "GymFG: A Framework with a Gym Interface for FlightGear." https://arxiv.org/abs/2004.12481.
    Abstract
    Over the past decades, progress in deployable autonomous flight systems has slowly stagnated. This is reflected in today's production air-crafts, where pilots only enable simple physics-based systems such as autopilot for takeoff, landing, navigation, and terrain/traffic avoidance. Evidently, autonomy has not gained the trust of the community where higher problem complexity and cognitive workload are required. To address trust, we must revisit the process for developing autonomous capabilities: modeling and simulation. Given the prohibitive costs for live tests, we need to prototype and evaluate autonomous aerial agents in a high fidelity flight simulator with autonomous learning capabilities applicable to flight systems: such a open-source development platform is not available. As a result, we have developed GymFG: GymFG couples and extends a high fidelity, open-source flight simulator and a robust agent learning framework to facilitate learning of more complex tasks. Furthermore, we have demonstrated the use of GymFG to train an autonomous aerial agent using Imitation Learning. With GymFG, we can now deploy innovative ideas to address complex problems and build the trust necessary to move prototypes to the real-world.
    Collections
    • CAS: Computer Science: Scholarly Papers [257]
    • BU Open Access Articles [4751]


    Boston University
    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Boston University
    Contact Us | Send Feedback | Help