Physical Limits to Spatial Resolution of Optical Recording: Clarifying the Spatial Structure of Cortical Hypercolumns

Date
2005-01
DOI
Authors
Polimeni, Jonathan
Granquist-Fraser, Domhnull
Wood, Richard
Schwartz, Eric
Version
OA Version
Citation
Abstract
Neurons in macaque primary visual cortex are spatially arranged by their global topographic position and in at least three overlapping local modular systems: ocular dominance columns, orientation pinwheels, and cytochrome oxidase (CO) blobs. Individual neurons in the blobs are not tuned to orientation, and populations of neurons in the pinwheel center regions show weak orientation tuning, suggesting a close relation between pinwheel centers and CO blobs. However, this hypothesis has been challenged by a series of optical recording experiments. In this report, we show that the statistical error associated with photon scatter and absorption in brain tissue combined with theblurring introduced by the optics of the imaging system has typically been in the range of 250 μm. These physical limitations cause a systematic error in the location of pinwheel centers because of the vectorial nature of these patterns, such that the apparent location of a pinwheel center measured by optical recording is never (on average) in the correct in vivo location. The systematic positional offset is about 116 μtm, which is large enough to account for the claimed mis-alignment of CO blobs and pinwheel centers. Thus, optical recording, as it has been used to date, has insufficient spatial resolution to accurately locate pinwheel centers. The earlier hypothesis that CO blobs and pinwheel centers are co-terminous remains the only one currently supported by reliable observation.
Description
License
Copyright 2005 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.