Investigating dendritic motility in novel Roseovarius isolates
Embargo Date
2023-09-10
OA Version
Citation
Abstract
Marine microbes support global carbon cycling by sequestration and metabolizing of marine carbon. Understanding how these microbes use unique motility modalities to navigate the physicochemical environment of the ocean is crucial to understanding microbial carbon metabolism. Motility in several marine Rhodobacter strains exhibit dendritic motility, but underlying genetic mechanisms remain poorly characterized. To lay groundwork for future study of genetic mechanisms for dendritic motility in novel Rhodobacter strains HOT5_B8 and HOT5_C3, we use timelapse microscopy to qualitatively and quantitatively characterize patterns in dendrite formation. Preliminary results determine that dendritic motility is faster than non-dendritic motility in HOT5_B8 and HOT5_C3. Further, key differences in HOT5_B8 and HOT5_C3 behaviors are used as evidence to posit putative density-dependent mechanisms in the formation and behaviors of dendrites.