A Neural Model of How the Brain Computes Heading from Optic Flow in Realistic Scenes

Date
2008-12
DOI
Authors
Browing, Andrew N.
Grossberg, Stephen
Mingolla, Ennio
Version
OA Version
Citation
Abstract
Animals avoid obstacles and approach goals in novel cluttered environments using visual information, notably optic flow, to compute heading, or direction of travel, with respect to objects in the environment. We present a neural model of how heading is computed that describes interactions among neurons in several visual areas of the primate magnocellular pathway, from retina through V1, MT+, and MSTd. The model produces outputs which are qualitatively and quantitatively similar to human heading estimation data in response to complex natural scenes. The model estimates heading to within 1.5° in random dot or photo-realistically rendered scenes and within 3° in video streams from driving in real-world environments. Simulated rotations of less than 1 degree per second do not affect model performance, but faster simulated rotation rates deteriorate performance, as in humans. The model is part of a larger navigational system that identifies and tracks objects while navigating in cluttered environments.
Description
License
Copyright 2008 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.