Unsupervised learning in high-dimensional space

Date
2014
DOI
Authors
Qian, Jing
Version
OA Version
Citation
Abstract
In machine learning, the problem of unsupervised learning is that of trying to explain key features and find hidden structures in unlabeled data. In this thesis we focus on three unsupervised learning scenarios: graph based clustering with imbalanced data, point-wise anomaly detection and anomalous cluster detection on graphs. In the first part we study spectral clustering, a popular graph based clustering technique. We investigate the reason why spectral clustering performs badly on imbalanced and proximal data. We then propose the partition constrained minimum cut (PCut) framework based on a novel parametric graph construction method, that is shown to adapt to different degrees of imbalanced data. We analyze the limit cut behavior of our approach, and demonstrate the significant performance improvement through clustering and semi-supervised learning experiments on imbalanced data. [TRUNCATED]
Description
Thesis (Ph.D.)--Boston University
License