Kinematic Coordinates in Which Motor Cortical Cells Encode Movement Direction

Date
1998-06
DOI
Authors
Ajemian, Robert
Bullock, Daniel
Grossberg, Stephen
Version
OA Version
Citation
Abstract
During goal-directed reaching in primates, a sensorimotor transformation generates a dynamical pattern of muscle activation. Within the context of this sensorimotor transformation, a fundamental question concems the coordinate systems in which individual cells in the primary motor cortex (MI) encode movement direction. This article develops a mathematical framework that computes, as a function of the coordinate system in which an individual cell is hypothesized to operate, the spatial preferred direction (pd) of that cell as the ann configuration and hand location vary. Three coordinate systems are explicitly modeled: Cartesian spatial, shoulder-centered, and joint angle. The computed patterns of spatial pds are distinct for each of these three coordinate systems, and experimental approaches are described which can capitalize upon these differences to compare the empirical adequacy of each coordinate hypothesis. One particular experiment involving curved motion (Hocherman and Wise 1991) was analyzed from this perspective. Out of the three coordinate systems tested, the assumption of joint angle coordinates best explained the observed cellular response properties. The mathematical framework developed in this paper can also be used to design new experiments that are capable of disambiguating between a given set of specified coordinate hypotheses.
Description
License
Copyright 1998 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.