A method for generating new datasets based on copy number for cancer analysis

Date
2015-01-01
Authors
Kim, Shinuk
Kon, Mark
Kang, Hyunsik
Version
Published version
OA Version
Citation
Shinuk Kim, Mark Kon, Hyunsik Kang. 2015. "A Method for Generating New Datasets Based on Copy Number for Cancer Analysis." BIOMED RESEARCH INTERNATIONAL. https://doi.org/10.1155/2015/467514
Abstract
New data sources for the analysis of cancer data are rapidly supplementing the large number of gene-expression markers used for current methods of analysis. Significant among these new sources are copy number variation (CNV) datasets, which typically enumerate several hundred thousand CNVs distributed throughout the genome. Several useful algorithms allow systems-level analyses of such datasets. However, these rich data sources have not yet been analyzed as deeply as gene-expression data. To address this issue, the extensive toolsets used for analyzing expression data in cancerous and noncancerous tissue (e.g., gene set enrichment analysis and phenotype prediction) could be redirected to extract a great deal of predictive information from CNV data, in particular those derived from cancers. Here we present a software package capable of preprocessing standard Agilent copy number datasets into a form to which essentially all expression analysis tools can be applied. We illustrate the use of this toolset in predicting the survival time of patients with ovarian cancer or glioblastoma multiforme and also provide an analysis of gene- and pathway-level deletions in these two types of cancer.
Description
License
Copyright © 2015 Shinuk Kim et al. This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.