Building a Casimir metrology platform with a commercial MEMS sensor
Files
Date
2019
Authors
Stange, Alexander
Imboden, Matthias
Javor, Josh
Barrett, Lawrence K.
Bishop, David J.
Version
Published version
OA Version
Citation
A. Stange, M. Imboden, J. Javor, L.K. Barrett, D.J. Bishop. 2019. "Building a Casimir metrology platform with a commercial MEMS sensor." Microsystems & Nanoengineering, Volume 5, Issue 1, pp.14-. https://doi.org/10.1038/s41378-019-0054-5
Abstract
The Casimir Effect is a physical manifestation of quantum fluctuations of the electromagnetic vacuum. When two metal plates are placed close together, typically much less than a micron, the long wavelength modes between them are frozen out, giving rise to a net attractive force between the plates, scaling as d -4 (or d -3 for a spherical-planar geometry) even when they are not electrically charged. In this paper, we observe the Casimir Effect in ambient conditions using a modified capacitive micro-electromechanical system (MEMS) sensor. Using a feedback-assisted pick-and-place assembly process, we are able to attach various microstructures onto the post-release MEMS, converting it from an inertial force sensor to a direct force measurement platform with pN (piconewton) resolution. With this system we are able to directly measure the Casimir force between a silver-coated microsphere and gold-coated silicon plate. This device is a step towards leveraging the Casimir Effect for cheap, sensitive, room temperature quantum metrology.
Description
License
© The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.