Neural Control of Rhythmic Coordinated Movements
Date
1994-04
DOI
Authors
Cohen, Michael A.
Grossberg, Stephen
Pribe, Christopher
Version
OA Version
Citation
Abstract
How do humans and other animals accomplish coordinated movements? How are novel combinations of limb joints rapidly assembled into new behavioral units that move together in in-phase or anti-phase movement patterns during complex movement tasks? A neural model simulates data from human bimanual coordination tasks. As in the data, anti-phase oscillations at low frequencies switch to in-phase oscillations at high frequencies, in-phase oscillations occur both at low and high frequencies, phase fluctuations occur at the anti-phase in-phase transition, a "seagull effect" of larger errors occurs at intermediate phases, and oscillations slip toward in-phase and anti-phase when driven at intermediate phases.
Description
License
Copyright 1994 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.