A Neural Model of Saccadic Eye Movement Control Explains Task-Specific Adaptation

Date
1998-07
DOI
Authors
Gancarz, Gregory
Grossberg, Stephen
Version
OA Version
Citation
Abstract
Multiple brain learning sites are needed to calibrate the accuracy of saccadic eye movements. This is true because saccadcs can be made reactively to visual cues, attentively to visual or auditory cues, or planned in response to memory cues using visual, parietal, and prefrontal cortex, as well as superior colliculus, cerebellum, and reticular formation. The organization of these sites can be probed by displacing a visual target during a saccade. The resulting adaptation typically shows incomplete and asymmetric transfer between different tasks. A neural model of saccadic system learning is developed to explain these data, as well as data about saccadic coordinate changes.
Description
License
Copyright 1998 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.