Gradient descent for sparse rank-one matrix completion for crowd-sourced aggregation of sparsely interacting workers

Files
ma18b.pdf(429.05 KB)
Published version
Date
2018-07-10
DOI
Authors
Ma, Yao
Olshevsky, Alexander
Saligrama, Venkatesh
Czepesvari, Csaba
Version
Published version
OA Version
Citation
Yao Ma, Alexander Olshevsky, Venkatesh Saligrama, Csaba Czepesvari. 2018. "Gradient Descent for Sparse Rank-One Matrix Completion for Crowd-Sourced Aggregation of Sparsely Interacting Workers." International Conference on Machine Learning (ICML)
Abstract
We consider worker skill estimation for the singlecoin Dawid-Skene crowdsourcing model. In practice skill-estimation is challenging because worker assignments are sparse and irregular due to the arbitrary, and uncontrolled availability of workers. We formulate skill estimation as a rank-one correlation-matrix completion problem, where the observed components correspond to observed label correlation between workers. We show that the correlation matrix can be successfully recovered and skills identifiable if and only if the sampling matrix (observed components) is irreducible and aperiodic. We then propose an efficient gradient descent scheme and show that skill estimates converges to the desired global optima for such sampling matrices. Our proof is original and the results are surprising in light of the fact that even the weighted rank-one matrix factorization problem is NP hard in general. Next we derive sample complexity bounds for the noisy case in terms of spectral properties of the signless Laplacian of the sampling matrix. Our proposed scheme achieves state-of-art performance on a number of real-world datasets.
Description
License