Threshold Determination for ARTMAP-FD Familiarity Discrimination
Files
Date
1997-05
DOI
Authors
Carpenter, Gail A.
Rubin, Mark A.
Streilein, William W.
Version
OA Version
Citation
Abstract
The ARTMAP-FD neural network performs both identification (placing test patterns in classes encountered during training) and familiarity discrimination (judging whether a test pattern belongs to any of the classes encountered during training). ARTMAP-FD quantifies the familiarity of a test pattern by computing a measure of the degree to which the pattern's components lie within the ranges of values of training patterns grouped in the same cluster. This familiarity measure is compared to a threshold which can be varied to generate a receiver operating characteristic (ROC) curve. Methods for selecting optimal values for the threshold are evaluated. The performance of validation-set methods is compared with that of methods which track the development of the network's discrimination capability during training. The techniques are applied to databases of simulated radar range profiles.
Description
License
Copyright 1997 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.