Electromagnetic acoustic source (EMAS) for generating shock waves and cavitation in mercury

Date
2013
DOI
Authors
Wang, Qi
Version
Embargo Date
Indefinite
OA Version
Citation
Abstract
In the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory a vessel of liquid mercury is subjected to a proton beam. The resulting nuclear interaction produces neutrons that can be used for materials research, among other things, but also launches acoustic waves with pressures in excess of 10 MPa. The acoustic waves have high enough tensile stress to generate cavitation in the mercury which results in erosion to the steel walls of the vessel. In order to study the cavitation erosion and develop mitigation schemes it would be convenient to have a way of generating similar pressures and cavitation in mercury, without the radiation concerns associated with a proton beam. Here an electromagnetic acoustic source (EMAS) has been developed which consisted of a coil placed close to a metal plate which is in turn is in contact with a fluid. The source is driven by discharging a capacitor through the coil and results in a repulsive force on the plate launching acoustic waves in the fluid. A theoretical model is presented to predict the acoustic field from the EMAS and compares favorably with measurements made in water. The pressure from the EMAS was reported as a function of capacitance, charging voltage, number of coils, mylar thickness, and properties of the plates. The properties that resulted in the highest pressure were employed for experiments in mercury and a maximum pressure recorded was 7.1 MPa. Cavitation was assessed in water and mercury by high speed camera and by detecting acoustic emissions. Bubble clouds with lifetimes on the order of 100 p,s were observed in water and on the order of 600 µs in mercury. Based on acoustic emissions the bubble radius in mercury was estimated to be 0.98 mm. Experiments to produce damage to a stainless steel plate in mercury resulted in a minimal effect after 2000 shock waves at a rate of 0.33 Hz -- likely because the pressure amplitude was not high enough. In order to replicate the conditions in the SNS it is necessary to generate 40 MPa acoustic pulses in mercury at a rate of 60 Hz and it was estimated that a 20 kV power supply in excess of 100 kW would be needed to achieve that.
Description
Thesis (Ph.D.)--Boston University PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.
License