A Theoretical Analysis of the Influence of Fixational Instability on the Development of Thalamocortical Connectivity

Date
2005-01
DOI
Authors
Casile, Antonino
Rucci, Michele
Version
OA Version
Citation
Abstract
Under natural viewing conditions, the physiological inotability of visual fixation keeps the projection of the stimulus on the retina in constant motion. After eye opening, chronic exposure to a constantly moving retinal image might influence the experience-dependent refinement of cell response characteristics. The results of previous modeling studies have suggested a contribution of fixational instability in the Hebbian maturation of the receptive fields of V1 simple cells (Rucci, Edelman, & Wray, 2000; Rucci & Casile, 2004). This paper presents a mathematieal explanation of our previous computational results. Using quasi-linear models of LGN units and V1 simple cells, we derive analytical expressions for the second-order statistics of thalamocortical activity before and after eye opening. We show that in the presence of natural stimulation, fixational instability introduces a spatially uncorrelated signal in the retinal input, whieh strongly influences the structure of correlated activity in the model.
Description
License
Copyright 2005 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.