A Neural Model of How The Brain Represents and Compares Numbers

Date
1999-10
DOI
Authors
Grossberg, Stephen
Repin, Dmitry
Version
OA Version
Citation
Abstract
Many psychophysical experiments have shown that the representation of numbers and numerical quantities in humans and animals is related to number magnitude. A neural network model is proposed to quantitatively simulate error rates in quantification and numerical comparison tasks, and reaction times for number priming and numerical assessment and comparison tasks. Transient responses to inputs arc integrated before they activate an ordered spatial map that selectively responds to the number of events in a sequence. The dynamics of numerical comparison are encoded in activity pattern changes within this spatial map. Such changes cause a "directional comparison wave" whose properties mimic data about numerical comparison. These model mechanisms are variants of neural mechanisms that have elsewhere been used to explain data about motion perception, attention shifts, and target tracking. Thus, the present model suggests how numerical representations may have emerged as specializations of more primitive mechanisms in the cortical Where processing stream.
Description
License
Copyright 1999 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.