ISE Research: New Mobility
Permanent URI for this collection
As the electric grid becomes steadily cleaner, electrification of transportation can play a central role in reducing emissions of heat-trapping gases. BU ISE in collaboration with Columbia University and Global Energy Interconnection Development and Cooperation Organization (GEIDCO) are exploring electric vehicle (EV) adoption and charging infrastructure across cities around the world.
Browse
Recent Submissions
Item Multi-modal travel(Boston University Institute for Sustainable Energy, 2020-06-01) Adukonu, EdemEfficient mobility within cities is a bedrock for the urban economy. With the ever-growing urban populations seeking modern forms of transportation and an expanding array of mobility options introduced by innovators, it has become necessary to integrate these solutions into an efficient multi-modal system to deliver the best value to users at low cost. This memo introduces the concept of multi-modal transportation in cities and the elements necessary to build it efficiently. It takes lessons from initiatives in Los Angeles and Singapore and condenses these learnings into an easily consumable summary, with recommendations to cites around the world.Item Pooling stated and revealed preference data in the presence of RP endogeneity(Elsevier, 2018-03) Helveston, John P.; Feit, Elea McDonnell; Michalek, Jeremy J.Pooled discrete choice models combine revealed preference (RP) data and stated preference (SP) data to exploit advantages of each. SP data is often treated with suspicion because consumers may respond differently in a hypothetical survey context than they do in the marketplace. However, models built on RP data can suffer from endogeneity bias when attributes that drive consumer choices are unobserved by the modeler and correlated with observed variables. Using a synthetic data experiment, we test the performance of pooled RP–SP models in recovering the preference parameters that generated the market data under conditions that choice modelers are likely to face, including (1) when there is potential for endogeneity problems in the RP data, such as omitted variable bias, and (2) when consumer willingness to pay for attributes may differ from the survey context to the market context. We identify situations where pooling RP and SP data does and does not mitigate each data source’s respective weaknesses. We also show that the likelihood ratio test, which has been widely used to determine whether pooling is statistically justifiable, (1) can fail to identify the case where SP context preference differences and RP endogeneity bias shift the parameter estimates of both models in the same direction and magnitude and (2) is unreliable when the product attributes are fixed within a small number of choice sets, which is typical of automotive RP data. Our findings offer new insights into when pooling data sources may or may not be advisable for accurately estimating market preference parameters, including consideration of the conditions and context under which the data were generated as well as the relative balance of information between data sources.Item Final report: Workshop on: Integrating electric mobility systems with the grid infrastructure(Boston University Institute for Sustainable Energy, 2019-11) Cassandras, Christos G.; Fox-Penner, Peter; Kelly, HenryEXECUTIVE SUMMARY: This document is a report on the workshop entitled “Integrating Electric Mobility Systems with the Grid Infrastructure” which was held at Boston University on November 6-7 with the sponsorship of the Sloan Foundation. Its objective was to bring together researchers and technical leaders from academia, industry, and government in order to set a short and longterm research agenda regarding the future of mobility and the ability of electric utilities to meet the needs of a highway transportation system powered primarily by electricity. The report is a summary of their insights based on workshop presentations and discussions. The list of participants and detailed Workshop program are provided in Appendices 1 and 2. Public and private decisions made in the coming decade will direct profound changes in the way people and goods are moved and the ability of clean energy sources – primarily delivered in the form of electricity – to power these new systems. Decisions need to be made quickly because of rapid advances in technology, and the growing recognition that meeting climate goals requires rapid and dramatic action. The blunt fact is, however, that the pace of innovation, and the range of business models that can be built around these innovations, has grown at a rate that has outstripped our ability to clearly understand the choices that must be made or estimate the consequences of these choices. The group of people assembled for this Workshop are uniquely qualified to understand the options that are opening both in the future of mobility and the ability of electric utilities to meet the needs of a highway transportation system powered primarily by electricity. They were asked both to explain what is known about the choices we face and to define the research issues most urgently needed to help public and private decision-makers choose wisely. This report is a summary of their insights based on workshop presentations and discussions. New communication and data analysis tools have profoundly changed the definition of what is technologically possible. Cell phones have put powerful computers, communication devices, and position locators into the pockets and purses of most Americans making it possible for Uber, Lyft and other Transportation Network Companies to deliver on-demand mobility services. But these technologies, as well as technologies for pricing access to congested roads, also open many other possibilities for shared mobility services – both public and private – that could cut costs and travel time by reducing congestion. Options would be greatly expanded if fully autonomous vehicles become available. These new business models would also affect options for charging electric vehicles. It is unclear, however, how to optimize charging (minimizing congestion on the electric grid) without increasing congestion on the roads or creating significant problems for the power system that supports such charging capacity. With so much in flux, many uncertainties cloud our vision of the future. The way new mobility services will reshape the number, length of trips, and the choice of electric vehicle charging systems and constraints on charging, and many other important behavioral issues are critical to this future but remain largely unknown. The challenge at hand is to define plausible future structures of electric grids and mobility systems, and anticipate the direct and indirect impacts of the changes involved. These insights can provide tools essential for effective private ... [TRUNCATED]Item Long-term U.S transportation electricity use considering the effect of autonomous-vehicles: Estimates & policy observations(Elsevier Ltd., 2018-11) Fox-Penner, Peter; Gorman, Will; Hatch, JenniferIn this paper, we model three layers of transportation disruption – first electrification, then autonomy, and finally sharing and pooling – in order to project transportation electricity demand and greenhouse gas emissions in the United States to 2050. Using an expanded kaya identity framework, we model vehicle stock, energy intensity, and vehicle miles traveled, progressively considering the effects of each of these three disruptions. We find that electricity use from light duty vehicle transport will likely be in the 570–1140 TWh range, 13–26%, respectively, of total electricity demand in 2050. Depending on the pace at which the electric sector decarbonizes, this increase in electric demand could correspond to a decrease in LDV greenhouse gas emissions of up to 80%. In the near term, rapid and complete transport electrification with a carbon-free grid should remain the cornerstones of transport decarbonization policy. However, long-term policy should also aim to mitigate autonomous vehicles’ potential to increase driving mileage, urban and suburban sprawl, and traffic congestion while incentivizing potential energy efficiency improvements through both better system management and the lightweighting of an accident-free vehicle fleet.Item Melting the ICE: lessons from China and the West in the transition from the internal combustion engine to electric vehicles(Boston University Institute for Sustainable Energy, 2019-06-10) Fox-Penner, Peter; Hao, Jie (Roger); Hatch, Jennifer; Helveston, John P.; Jermain, David O.; Pereira, Guillermo Ivan; Ren, Z. Justin; Sandalow, David B.; Wang, Peishan; Fox-Penner, Peter; Ren, Z. Justin; Jermain, David O.A decade after the launch of the contemporary global electric vehicle (EV) market, most cities face a major challenge preparing for rising EV demand. Some cities, and the leaders who shape them, are meeting and even leading demand for EV infrastructure. This book aggregates deep, groundbreaking research in the areas of urban EV deployment for city managers, private developers, urban planners, and utilities who want to understand and lead change.