JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    •   OpenBU
    • College of Arts and Sciences
    • Computer Science
    • CAS: Computer Science: Technical Reports
    • View Item
    •   OpenBU
    • College of Arts and Sciences
    • Computer Science
    • CAS: Computer Science: Technical Reports
    • View Item

    Scalability of Multicast Delivery for Non-sequential Streaming Access

    Thumbnail
    Download/View
    2001-025-multi...pdf (516.0Kb)
    Date Issued
    2001-10
    Author
    Shudong, Jin
    Bestavros, Azer
    Share to FacebookShare to TwitterShare by Email
    Export Citation
    Download to BibTex
    Download to EndNote/RefMan (RIS)
    Metadata
    Show full item record
    Permanent Link
    https://hdl.handle.net/2144/1646
    Abstract
    To serve asynchronous requests using multicast, two categories of techniques, stream merging and periodic broadcasting have been proposed. For sequential streaming access where requests are uninterrupted from the beginning to the end of an object, these techniques are highly scalable: the required server bandwidth for stream merging grows logarithmically as request arrival rate, and the required server bandwidth for periodic broadcasting varies logarithmically as the inverse of start-up delay. However, sequential access is inappropriate to model partial requests and client interactivity observed in various streaming access workloads. This paper analytically and experimentally studies the scalability of multicast delivery under a non-sequential access model where requests start at random points in the object. We show that the required server bandwidth for any protocols providing immediate service grows at least as the square root of request arrival rate, and the required server bandwidth for any protocols providing delayed service grows linearly with the inverse of start-up delay. We also investigate the impact of limited client receiving bandwidth on scalability. We optimize practical protocols which provide immediate service to non-sequential requests. The protocols utilize limited client receiving bandwidth, and they are near-optimal in that the required server bandwidth is very close to its lower bound.
    Collections
    • CAS: Computer Science: Technical Reports [584]

    Contact Us | Send Feedback | Help
     

     

    Browse

    All of OpenBUCommunities & CollectionsIssue DateAuthorsTitlesSubjectsThis CollectionIssue DateAuthorsTitlesSubjects

    Deposit Materials

    LoginNon-BU Registration

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Contact Us | Send Feedback | Help