Towards a neural-level cognitive architecture: modeling behavior in working memory tasks with neurons

Files
Cogsci2019_TiganjEtal.pdf(1.21 MB)
Published version
Date
2019
DOI
Authors
Tiganj, Zoran
Howard, Marc W.
Cruzado, Nathanael
Version
OA Version
Accepted manuscript
Citation
Zoran Tiganj, Marc Howard, Nathaniel Cruzado. 2019. "Towards a neural-level cognitive architecture: modeling behavior in working memory tasks with neurons." Proceedings of the 41st Annual Meeting of the Cognitive Science Society. Montreal,
Abstract
Constrained by results from classic behavioral experiments we provide a neural-level cognitive architecture for modeling behavior in working memory tasks. We propose a canonical microcircuit that can be used as a building block for working memory, decision making and cognitive control. The controller controls gates to route the flow of information between the working memory and the evidence accumulator and sets parameters of the circuits. We show that this type of cognitive architecture can account for results in behavioral experiments such as judgment of recency, probe recognition and delayedmatch- to-sample. In addition, the neural dynamics generated by the cognitive architecture provides a good match with neurophysiological data from rodents and monkeys. For instance, it generates cells tuned to a particular amount of elapsed time (time cells), to a particular position in space (place cells) and to a particular amount of accumulated evidence.
Description
License