Fast Approximate Reconciliation of Set Differences

Date
2002
DOI
Authors
Byers, John
Considine, Jeffrey
Mitzenmacher, Michael
Version
OA Version
Citation
Abstract
We present new, simple, efficient data structures for approximate reconciliation of set differences, a useful standalone primitive for peer-to-peer networks and a natural subroutine in methods for exact reconciliation. In the approximate reconciliation problem, peers A and B respectively have subsets of elements SA and SB of a large universe U. Peer A wishes to send a short message M to peer B with the goal that B should use M to determine as many elements in the set SB–SA as possible. To avoid the expense of round trip communication times, we focus on the situation where a single message M is sent. We motivate the performance tradeoffs between message size, accuracy and computation time for this problem with a straightforward approach using Bloom filters. We then introduce approximation reconciliation trees, a more computationally efficient solution that combines techniques from Patricia tries, Merkle trees, and Bloom filters. We present an analysis of approximation reconciliation trees and provide experimental results comparing the various methods proposed for approximate reconciliation.
Description
License