A Lower-Bound Result on the Power of a Genetic Algorithm

Files
Date
1993-07-31
DOI
Authors
Park, Kihong
Version
OA Version
Citation
Park, Kihong. "A Lower-Bound Result on the Power of a Genetic Algorithm”, Technical Report BUCS-1994-009, Computer Science Department, Boston University, October 12, 1994. [Available from: http://hdl.handle.net/2144/1487]
Abstract
This paper presents a lower-bound result on the computational power of a genetic algorithm in the context of combinatorial optimization. We describe a new genetic algorithm, the merged genetic algorithm, and prove that for the class of monotonic functions, the algorithm finds the optimal solution, and does so with an exponential convergence rate. The analysis pertains to the ideal behavior of the algorithm where the main task reduces to showing convergence of probability distributions over the search space of combinatorial structures to the optimal one. We take exponential convergence to be indicative of efficient solvability for the sample-bounded algorithm, although a sampling theory is needed to better relate the limit behavior to actual behavior. The paper concludes with a discussion of some immediate problems that lie ahead.
Description
License