Heating and many-body resonances in a periodically driven two-band system
Files
Accepted manuscript
Date
2016-04-18
Authors
Bukov, Marin Georgiev
Heyl, Markus
Huse, David A.
Polkovnikov, Anatoli
Version
Accepted manuscript
OA Version
Citation
Marin Bukov, Markus Heyl, David A Huse, Anatoli Polkovnikov. 2016. "Heating and many-body resonances in a periodically driven two-band system." PHYSICAL REVIEW B, Volume 93, Issue 15, pp. ? - ? (16). https://doi.org/10.1103/PhysRevB.93.155132
Abstract
We study the dynamics and stability in a strongly interacting resonantly driven two-band model. Using exact numerical simulations, we find a stable regime at large driving frequencies where the time evolution is governed by a local Floquet Hamiltonian that is approximately conserved out to very long times. For slow driving, on the other hand, the system becomes unstable and heats up to infinite temperature. While thermalization is relatively fast in these two regimes (but to different “temperatures”), in the crossover between them we find slow nonthermalizing time evolution: temporal fluctuations become strong and temporal correlations long lived. Microscopically, we trace back the origin of this nonthermalizing time evolution to the properties of rare Floquet many-body resonances, whose proliferation at lower driving frequency removes the approximate energy conservation, and thus produces thermalization to infinite temperature.